
Analysis of a Vapor-Compression Refrigeration Cycle

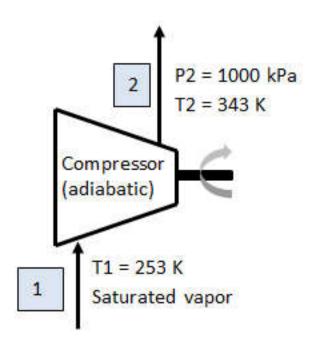
Introduction

This application analyzes the following refrigeration cycle, and calculates the coefficient of performance.

Additionally, the thermodynamic cycle will be plotted on a pressure-enthalpy-temperature chart.

The compressor, condenser, throttle and evaporator are analyzed in sequence with this equation, a statement of the conservation of energy,

$$q - w = \Delta h + \Delta KE + \Delta PE$$


where

- w is the work done by the component
- ΔKE and ΔPE are the changes in kinetic and potential energy
- Δh is the change in specific enthalpy

- q is the heat transferred to the system
- > restart
- > with(ThermophysicalData) :
 with(Units[Standard]) :
 with(plots) :

Compressor

Consider the energy flows in the compressor. For an adiabatic process, q = 0. Also $\Delta KE = 0$ and $\Delta PE = 0$. Hence $-w = \Delta h$

Enthalpies at points 1 and 2

- > $P2 := 1000 \cdot 10^3 Pa$:
- > h1 := Property(H, temperature = 253 K, Q = 1, R134a);

$$3.864615358\ 10^5\ \frac{J}{kg}$$
 (2.1)

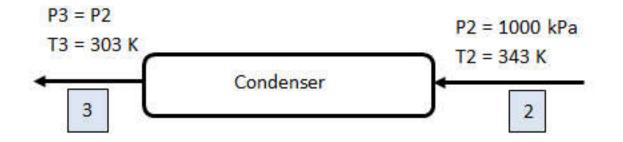
> h2 := Property(H, temperature = 343 K, pressure = P2, R134a);

$$4.518442441\ 10^5\ \frac{J}{kg}$$
(2.2)

The work done by the compressor (w)

> workCompressor := h1 - h2

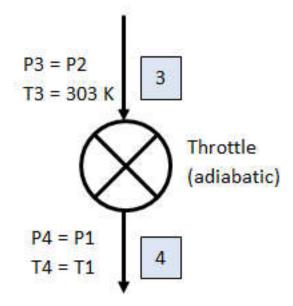
$$-65382.7083 \frac{J}{kg}$$
(2.3)


Pressure at point 1

> P1 := Property(P, temperature = 253 K, Q = 1, R134a)

$$PI := 1.318769284 \ 10^5 \ Pa \tag{2.4}$$

Condenser


For the condenser, w = 0, $\Delta KE = 0$ and $\Delta PE = 0$. Hence q = Δh

Enthalpy at point 3

> h3 := Property(H, temperature = 303 K, pressure = P2, R134a)
2.414995190 10⁵
$$\frac{J}{kg}$$

> h3 - h2
-2.103447251 10⁵ $\frac{J}{kg}$
(3.1)
(3.2)

For the throttle, q = 0, w = 0, $\Delta KE = 0$ and $\Delta PE = 0$. Hence $\Delta h = 0$

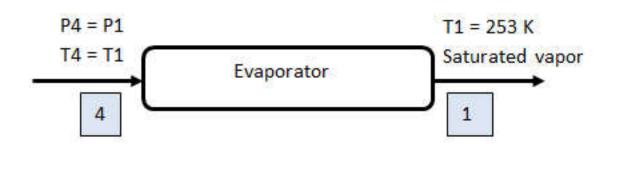
Enthalpy at point 4

> h4 := h3

$$2.414995190 \ 10^5 \ \frac{\text{J}}{\text{kg}}$$

(4.1

> P4 ≔ P1


$$P4 \coloneqq 1.318769284 \ 10^5 \ Pa \tag{4.2}$$

Quality at P = press4 and H = h4

> Property(Q, pressure = P4, H = h4, R134a)

Evaporator

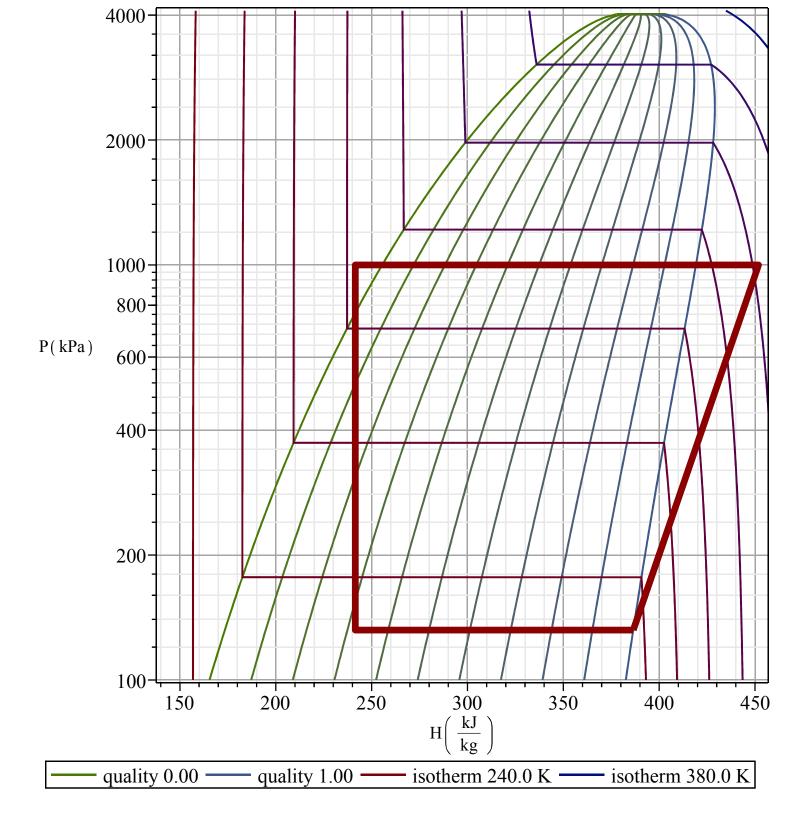
For the evaporator, w = 0, ${}_{\Delta}\!KE$ = 0 and ${}_{\Delta}\!PE$ = 0. Hence q = ${}_{\Delta}\!h$

Heat extracted by evaporator

> heatEvaporator := h4 - h1

$$1.449620168\ 10^5\ \frac{J}{kg}$$
 (5.1

Coefficient of Performance


heatEvaporator workCompressor

2.217130807

(6.1

Plot the Refrigeration Cycle on a P-h-T Chart

- > phtChart := PHTChart(R134a, 100 kPa ..4100 kPa) :
- > pts := convert~~([([h1, P1]), [h2, P2], [h3, P2], [h3, P4], [h1, P1]], unit_free) :
- > cycle := pointplot($0.001 \cdot \text{-pts}$, connect = true, color = "DarkRed", thickness = 5) :
- > display(phtChart, cycle)

