

Parameter Estimation for a Chemical Reaction

Introduction

This application estimates the rate parameters for a reversible reaction with dimerization of an intermediate.

$$A + B \xrightarrow{k \atop 1} C$$

$$C + C \xrightarrow{k \atop 3} D$$

It does this by

- parameterizing (with respect to k_1 , k_2 , k_3 and k_4) the numerical solution of the different equations that describe the reaction kinetics
- calculating the sum of the square of the errors between the model predictions and experimental data
- \bullet minimizing the sum of the square of the errors to find the best fit values of k_1 , k_2 , k_3 and k_4 .
- > restart: with(plots): with(Optimization):

Parameters and Experimental Data

>
$$A_0 := 2.1$$
:
 $B_0 := 3.1$:

Concentrations of C and D over time

- > times := $\begin{bmatrix} 0 & 7 & 14 & 21 & 28 & 35 & 42 & 49 & 56 & 63 & 70 \end{bmatrix}$:

Reaction Kinetics

> de1 :=
$$\frac{d}{dt}C_C(t) = k_1 \cdot (A_0 - C_C(t) - 2C_D(t)) \cdot (B_0 - C_C(t) - 2 \cdot C_D(t)) - k_2 \cdot C_C(t) - 2 \cdot k_3 \cdot C_C(t)^2 + 2 \cdot k_4 \cdot C_D(t)$$
 :

> de2 :=
$$\frac{d}{dt}C_D(t) = k_3 \cdot C_C(t)^2 - k_4 \cdot C_D(t)$$
 :

> ic :=
$$C_C(0) = 0, C_D(0) = 0$$
:

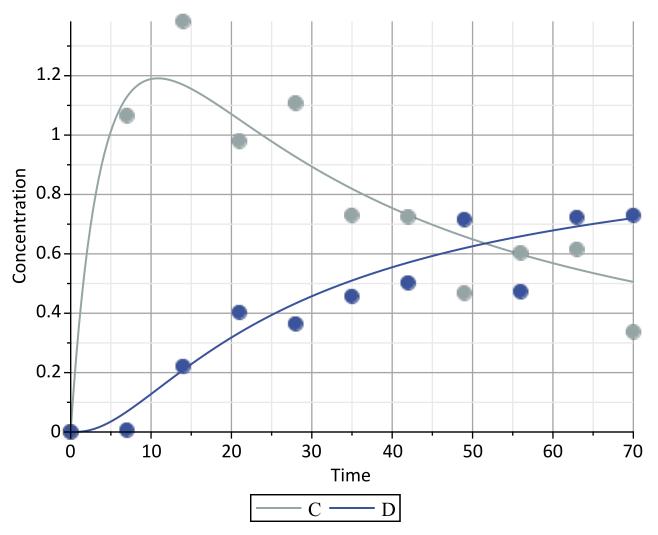
Sum of Square of Errors

> res := dsolve({de1, de2, ic}, parameters =
$$\begin{bmatrix} k_1, k_2, k_3, k_4 \end{bmatrix}$$
, numeric)
res := $\operatorname{proc}(x_r k_4 k_5)$... end $\operatorname{proc}(k_1, k_2, k_3, k_4)$
res(parameters = $\begin{bmatrix} k_1, k_2, k_3, k_4 \end{bmatrix}$):
add((C exp[i]-rhs(select(has, res(times[i]), C))[1]))^2 + (D exp[i]-rhs(select(has, res(times[i]), C))[1]))^2 + (D exp[i]-rhs(select(has, res(times[i]), C))[1]))^3 + (D exp[i]-rhs(select(has, res(times[i]), C))[1]))^4 + (D exp[i]-rhs(select(has, res(times[i]), C))[1])^4 + (D exp[i]-rhs(times[i]), C)(times[i])^4 + (D exp[i]-rhs(times[i]), C)(times[i]-r

 $\label{eq:continuous_continuou$

Minimize the Sum of the Square of the Errors

> optPars := Minimize ('sse'
$$(k_1, k_2, k_3, k_4)$$
, initialpoint = $\{k_1 = 0.011, k_2 = 0.002, k_3 = 0.02, k_4 = 0.002\}$, assume = nonnegative, optimalitytolerance = 0.00001) optPars := $[0.231411169620961532, [k_1 = 0.0632294154111440, k_2 = 0.0186953983808340, k_3]$ (5.1) = 0.0144413290425876, $k_4 = 0.$


Compare Experimental Results to Model

- > res := dsolve({de1, de2, ic}, parameters = $[k_1, k_2, k_3, k_4]$, numeric) :
- > res(parameters = [optPars[2][]]):
- > p_C := odeplot $\left(\text{res, } \left[\text{t, } C_C(\text{t})\right], \text{t = 0 ...70, color = ColorTools:-Color}\left(\left[\frac{149}{255}, \frac{165}{255}, \frac{166}{255}\right]\right), \text{ legend = "C", filled = true}\right)$:
- > p_C_exp := plot $\left(\text{times, C_exp, style = point, symbol = solidcircle, symbolsize = 20, color = ColorTools:<math display="block"> \text{Color}\left(\left[\frac{149}{255}, \frac{165}{255}, \frac{166}{255}\right]\right) \right) :$
- > p_D := odeplot $\left(\text{res, } \left[\text{t, } \textit{C}_{\text{D}}(\text{t})\right], \text{t = 0 ...70, color = ColorTools:-Color}\left(\left[\frac{58}{255}, \frac{83}{255}, \frac{155}{255}\right]\right), \text{ legend}\right)$

> p_D_exp := plot (times, D_exp, style = point, symbol = solidcircle, symbolsize = 20, color = ColorTools:-

$$\mathsf{Color}\left(\left[\frac{58}{255}, \frac{83}{255}, \frac{155}{255}\right]\right):$$

> display(p_C, p_C_exp, p_D, p_D_exp, symbol = solidcircle, size = [800, 400], axesfont = [Calibri], legendstyle = [font = [Calibri]], labels = ["Time", "Concentration"], labelfont = [Calibri], labeldirections = [horizontal, vertical], gridlines)

