
Connectivity in Maple 2022

Jupyter
The new Maple Kernel for Jupyter is a program bundled with Maple which allows Maple
to be used as the computation engine in a session of the Jupyter computation
environment. Sessions are executed in a web browser and can be saved as notebooks
combining explanatory text, mathematics, computations and media. These notebooks
may be shared and used by other users of the Maple Kernel for Jupyter.

•

To use the Maple Kernel for Jupyter, first ensure that Jupyter is installed on the same
machine as your Maple installation. Then follow the instructions in Configuring the Maple
Kernel for Jupyter to make Maple available as a kernel within Jupyter.

•

Once Maple is configured, it should appear within Jupyter as an available kernel type
when creating a new document. In a notebook using Maple as a kernel, a code cell
accepts input in standard Maple Notation (also known as 1-D math). Output is
displayed using standard file formats supported by Jupyter such as LaTeX and PNG.

•

Jupyter Package
The Jupyter package is a Maple package containing tools to support the Maple Kernel for
Jupyter.

with(Jupyter);>

CreateNotebook, ExtractCodeSources, GenerateKernelConfiguration, SetOutputRendererByType

With the CreateNotebook command we can create a Jupyter notebook suitable for use
with the Maple Kernel for Jupyter from a Maple help page, worksheet, or expression.
Here we transform this help page into a Jupyter notebook in the current user's home
directory.

CreateNotebook("Connectivity.ipynb", "updates,Maple2022,

Connectivity", source=help, base=homedir);

>

20615

The Jupyter package also includes tools for generating configuration files to set up the
Jupyter connection and controlling the way Maple output is displayed within Jupyter.

The SMTLIB Package
The SMTLIB package has been augmented with a new command SMTLIB:-Session, which
creates a session object. This purpose of this is to enable a persistent call to the
underlying SMT engine, so that the initialization cost need be paid at most once per
session.

•

The Session object also maintains a stack of the solver state. Thus we can explore a
particular subproblem of our current problem by pushing the stack with Push,
performing a specialized query using Assert and Satisfy, and then popping with Pop to
restore the prior state.

•

First, we assert an equation and confirm it is satisfiable over the reals.•

s := SMTLIB[Session]();>

s d

SMTLIB Session

23844984

Variables: 0

Stack Depth: 0

s:-Assert(x^2 - 25 = 0) assuming real;>

s:-Satisfy();>

x = 5

Now after pushing the session stack we impose another assumption, and discover that
the model has become unsatisfiable.

•

s:-Push():>

s:-Assert(x > 5);>

s:-Satisfiable();>

false

s:-Pop():>

After popping to restore the original problem, we can push again to explore the area to
the left of the known root, and find the one remaining real root.

•

s:-Push();>

1

s:-Assert(x < 5);>

s:-Satisfy();>

x = K5

s:-Pop();>

0

The DeepLearning Package
The DeepLearning package has undergone a number of updates and improvements in
Maple 2022.

Indexing DeepLearning Tensors
Tensor objects in DeepLearning now accept indexing syntax similar to Matrices, Vectors,
and Arrays in Maple.

restart:>

with(DeepLearning):>

M := RandomTensor(Gamma(2.5,3.3), [5,4,3], datatype=float[8],

seed=2022);

>

M d

DeepLearning Tensor

Shape: [5, 4, 3]

Data Type: float[8]

You can use this to create slices of an existing Tensor.

M2 := M[1..2,..,1..2];>

M2 d

DeepLearning Tensor

Shape: [2, 4, 2]

Data Type: float[8]

Additionally we can use this to directly access scalar values from inside the Tensor.

M[2,3,2];>

10.7615426222778

Alternatively the entire Tensor can be easily converted into a Vector, Matrix, or Array
with the convert command.

convert(M, Array);>

6.75313149056171 4.35116216422273 15.8836349575203 12.1491831021757

11.7160640627332 2.03390958544607 9.96030379277387 9.36755377418358

5.90730269483916 8.88558455121452 8.29299182444118 11.6766776384969

3.82283802557249 6.15935276225590 6.03589384550668 17.1526308248580

12.9928253114120 3.36829965586089 8.30668703969549 14.8079805405892
slice of 5 # 4 # 3 Array

Using GradientTape for Computing Tensor Gradients
A GradientTape is a execution context in which certain marked Tensors are watched
for the purposes of computing their gradients.

•

u := Constant([[3., 5.]], datatype=float[8]);>

u d

DeepLearning Tensor

Shape: [1, 2]

Data Type: float[8]

The following creates a tape object to track variables of interest.•

tape := GradientTape();>

tape d
DeepLearning GradientTape

!tensorflow.python.eager.backprop.GradientTape object at 0x0000022F309EC730O

The Enter and Exit commands activate and deactivate this context. Only operations
which occur after Enter has been invoked are tracked.

•

Enter(tape);>

DeepLearning GradientTape

!tensorflow.python.eager.backprop.GradientTape object at 0x0000022F309EC730O

tape:-Watch(u);>

v := u^2;>

v d

DeepLearning Tensor

Shape: [1, 2]

Data Type: float[8]

Exit(tape);>

grad := tape:-Gradient(v, u);>

grad d

DeepLearning Tensor

Shape: [1, 2]

Data Type: float[8]

convert(grad, Matrix);>

6. 10.

Convert between DeepLearning and Python objects
As DeepLearning is built on the Google TensorFlow library using Maple's connectivity
to Python, there is a close connection between many DeepLearning objects and
TensorFlow objects. The convert command now permits easy conversion between
DeepLearning objects and objects of type python from TensorFlow. This will simplify
the adaptation of TensorFlow models to DeepLearning and facilitate the interaction of
DeepLearning objects with TensorFlow features which have not been exposed in
DeepLearning.

•

The command convert(..., python) converts DeepLearning objects to their Python
TensorFlow equivalents.

•

t1 := Constant(<<1,2,3>|<4,5,6>|<7,8,9>>, datatype=float[8]);>

t1 d

DeepLearning Tensor

Shape: [3, 3]

Data Type: float[8]

convert(t1, python);>

"!Python object: tf.Tensor(

[[1. 4. 7.]

 [2. 5. 8.]

 [3. 6. 9.]], shape=(3, 3), dtype=float64)O"

Python:-ImportModule("tensorflow as tf");>

The command convert(..., DeepLearning) converts DeepLearning objects to their
Python TensorFlow equivalents.

•

pt2 := Python:-EvalString("tf.random.uniform(shape=[3,4],

maxval=20, dtype=tf.int32, seed=1701)");

>

pt2 d "!Python object: tf.Tensor(

[[9 2 7 13]

 [3 18 12 11]

 [9 19 12 12]], shape=(3, 4), dtype=int32)O"

t2 := convert(pt2, DeepLearning);>

t2 d

DeepLearning Tensor

Shape: [3, 4]

Data Type: integer[4]

pt3 := Python:-EvalFunction("tf.keras.layers.GaussianNoise", 5.5

);

>

pt3 d

"!Python object: !tensorflow.python.keras.layers.noise.GaussianNoise object at

0x0000022F309D56A0OO"

t3 := convert(pt3, DeepLearning);>

t3 d
DeepLearning Layer

!tensorflow.python.keras.layers.noise.GaussianNoise object at 0x0000022F309D56A0O

Additional Updates

Two-Dimensional Barcode Generation
The ImageTools:-GenerateBarcode command can generate a 2-D barcode in the QR
code format from an input string or ByteArray.

with(ImageTools):>

qrCode := GenerateBarcode("This is a test");>

qrCode d

0. 0. 0. 0. 0. 0. 0. 1. 1. 0. …

0. 1. 1. 1. 1. 1. 0. 1. 1. 0. …

0. 1. 0. 0. 0. 1. 0. 1. 1. 0. …

0. 1. 0. 0. 0. 1. 0. 1. 1. 0. …

0. 1. 0. 0. 0. 1. 0. 1. 0. 0. …

0. 1. 1. 1. 1. 1. 0. 1. 1. 0. …

0. 0. 0. 0. 0. 0. 0. 1. 0. 1. …

1. 1. 1. 1. 1. 1. 1. 1. 0. 1. …

1. 1. 0. 0. 1. 1. 0. 0. 0. 1. …

1. 0. 1. 0. 0. 0. 1. 0. 0. 0. …

« « « « « « « « « «

25 # 25 Array

ImageTools:-Embed(Scale(qrCode, 9, method=nearest));>

Converting Data between Formats in Memory
The convert command to objects of type Array, Matrix, Vector, string and ByteArray
has been supplemented with an additional option, sourceformat. This reads encoded
data from a string or ByteArray in a specified to the named type with no need for
external files.

•

•

Here we can read directly from a comma-delimited string to a Matrix:•

convert("1,2\n3,4", Matrix, sourceformat="CSV");>

1 2

3 4

The format specified must be one accepted by the Import command. When the
output type is not string or ByteArray, sourceformat may be abbreviated simply as
format.

•

Additionally, the convert command to objects of type string and ByteArray has been
supplemented with an additional option, targetformat. This writes the encoded data
to the output string or ByteArray in the named format, which must be one accepted
by the Export command.

•

This has the same effect as exporting the content to a file in the chosen format with
Export and then reading it to a string or ByteArray with FileTools:-Text:-ReadFile or
FileTools:-Binary:-ReadFile respectively, but is achieved without any user-visible need
for file input or output.

•

When the input type is not string or ByteArray, targetformat may be abbreviated
simply as format.

•

In these examples we convert expressions to strings encoded in JSON and LaTeX
respectively.

•

T := table(["firstname" = "G", "lastname" = "Raymond", "DOB" =

"1960-02-28"]);

>

T d table "lastname" = "Raymond", "firstname" = "G", "DOB" = "1960-02-28"

convert(T, string, format="JSON");>

"{

 "DOB": "1960-02-28",

 "firstname": "G",

 "lastname": "Raymond"

}"

convert({ solve(a*x^2 + b*x + c = 0, x) }, string, format=

"LaTeX");

>

"\left\{\frac{-b C\sqrt{-4 a c Cb^{2}}}{2 a}, -\frac{b C\sqrt{-4 a c Cb^{2}}}{2 a}\right\}"

In the following example we convert a 3-D plot to a ByteArray encoded in the STL
format

•

knot := algcurves:-plot_knot((-x^7 + y^3)*(-2*x^5 + y^2), x, y,

epsilon = 0.8, radius = 0.1, tubepoints = 9);

>

convert(knot, ByteArray, targetformat="STL");>

71, 101, 110, 101, 114, 97, 116, 101, 100, 32, 98, 121, 32, 77, 97, 112, 108, 101, 32, 50, 48, 50, 50, 46,

48, 44, 32, 88, 56, 54, 32, 54, 52, 32, 76, 73, 78, 85, 88, 44, 32, 70, 101, 98, 32, 49, 54, 32, 50, 48, 50,

50, 44, 32, 66, 117, 105, 108, 100, 32, 73, 68, 32, 49, 53, 57, 52, 49, 48, 51, 32, 32, 32, 32, 32, 32, 32,

32, 32, 32, K96, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, K92, K34, K22, 63,…,

/ 238384 Array entries not shown

Multipart Form Post
The new MultipartFormPost command in the URL package provides another protocol
for uploading data to a web service. This command mimics the behavior of a
submit button on a form-based webpage; usually one asking for a file upload and
other input data. The new command can package all of the entries together, send
them to the website in the correct format (either for storage, or analysis), and get the
post-submit page back for further processing if needed.

•

