Flow Through an Expansion Valve

Introduction

Refrigerant R717

- enters an expansion valve (of cross-sectional area 0.011 m²) at 11 bar, 330 K and 25 m s⁻¹,
- and leaves at 2 bar.

This application calculates the temperature and velocity of the refrigerant as it exits the valve.

The First Law of Thermodynamics states

$$\dot{Q}_{sys} = \dot{E}_{sys} + \dot{W}_{s} + \dot{m}_{out} \left(h_{out} + \frac{v_{out}^{2}}{2} + gz_{out} \right) - \dot{m}_{in} \left(h_{in} + \frac{v_{in}^{2}}{2} + gz_{in} \right)$$

where

- $\bullet \dot{\mathbf{Q}}_{_{\text{SVS}}}$ is the heat generated by the system
- $\bullet \, \bar{E}_{_{SYS}}$ is the rate of change of stored energy within the system
- \bullet $W_{_{\rm S}}$ is the rate of work done by the system (except flow work)
- $\bullet\,\dot{m}_{_{in}}$ and $\dot{m}_{_{out}}$ are the mass flowrates into and out of the system
- $\bullet~\mathbf{h}_{\mathrm{in}}$ and $\mathbf{h}_{\mathrm{out}}$ are the specific enthalpies of the fluid entering and leaving the system
- \bullet $v^{}_{in}$ and $v^{}_{out}$ are the velocities of the fluid entering and leaving the system
- \bullet z_{in} and z_{out} are the elevations of the fluid entering and leaving the system

For steady-state flow through an adiabatic expansion valve and no heat or work effects, the First Law of Thermodynamics reduces to

$$h_{in} + \frac{v_{in}^2}{2} = h_{out} + \frac{v_{out}^2}{2}$$

Assuming the input conditions are known, mass conversation implies that $\dot{m}_{in} = \dot{m}_{out} = m$, and hence

$$m = A \cdot v_{out} \cdot \rho_{out}$$

where A is the cross-section area of the valve and ρ_{out} is the fluid density at the exit.

The kinetic energy term in the First Law of Thermodynamics is generally small and is normally be ignored - this makes the combined system of equations explicit, and simple to solve. For this analysis, however, the kinetic energy term will remain. The equations are then implicit, and hence require a numerical solution

```
> restart :
    with(ThermophysicalData) :
```

Parameters

Entrance

> fluid := "R717" : $T_{in} := 310$: $P_{in} := 11 \cdot 10^{5}$: $v_{in} := 10$: A := 0.005 :

Enthalpy at inlet

>
$$h_{in} := Property(massspecificenthalpy, T = T_{in'}P = P_{in'}R717)$$

 $h_{in} := 1.6555909473111697010^{6}$ (2.1.1)

Density at inlet

>
$$\rho_{in} := Property(density, T = T_{in'}P = P_{in'}R717)$$

 $\rho_{in} := 8.15132757401520891$ (2.1.2)

Mass flowrate of refrigerant

$$m := A \cdot v_{in} \cdot \rho_{in}$$

 $m := 0.4075663787$ (2.1.3)

🔻 Exit

>

>
$$P_{out} := 2 \cdot 10^5$$
:

Enthalpy and density at outlet

> eq1 :=
$$h_{out}$$
 = Property ("massspecificenthalpy", "temperature" = T_{out} , "P" = P_{out} , fluid)
eq1 := h_{out} = ThermophysicalData:-Property ("massspecificenthalpy", "temperature" = T_{out} , "P" (2.2.1)

= 200000, "R717")

> eq2 := ρ_{out} = Property("D", "temperature" = T_{out} , "P" = P_{out} , fluid) eq2 := ρ_{out} = ThermophysicalData:-Property("D", "temperature" = T_{out} , "P" = 200000, "R717") (2.2.2)

Mass Conservation and First Law of Thermodynamics

> eq3 := $h_{in} + \frac{v_{in}^2}{2} = h_{out} + \frac{v_{out}^2}{2}$:

 $> eq4 := m = A \cdot v_{out} \cdot \rho_{out}$:

Solution of the Equation System

> res := fsolve({eq1, eq2, eq3, eq4}) res := {T_{out} = 285.0179004, h_{out} = 1.65411328910⁶, v_{out} = 55.27490598, p_{out} = 1.474688637} (4.1)

Plot Thermodynamic Process on a PhT Chart

