
GraphTheory
A substantial effort was put into Graph Theory for Maple 2023, including improved ability to
solve traveling salesman problems, support for multigraphs, new commands for graph
computation, and advances in visualization.

with GraphTheory : >

Traveling Salesman

Multigraph support

Graph products

Additions to SpecialGraphs

Traveling Salesman
The TravelingSalesman command now makes use of Concorde, a well-known library
implementing highly efficient heuristics for solving instances of the traveling salesman
problem. This addition considerably increases the size of problems which
TravelingSalesman is able to handle.

Example: Using TravelingSalesman with vertexpositions
In the following example, we import a dataset of the 100 largest cities in the continent of
Africa (including the island of Madagascar) and ask TravelingSalesman to find a minimal
tour of them.

AfricanCities d Import "example/AfricanCities100.tsv", base = datadir, output = Matrix,
skiplines = 1

>

G d CompleteGraph convert AfricanCities .., 2 , list , vertexpositions = AfricanCities .., 6,
5

>

G d Graph 1: an undirected graph with 100 vertices and 4950 edge(s)
With the new vertexpositions option, TravelingSalesman uses edge weights computed
from the geometric distance between vertices in the graph layout specified previously
when CompleteGraph was called. The new startvertex option allows a particular starting
vertex to be specified.

W, T d TravelingSalesman G, vertexpositions, startvertex = "Cairo">

W, T d 421.032920193835, "Cairo", "Alexandria", "Benghazi", "Misratah", "Tripoli", "Tunis",

"Algiers", "Oran", "Tangier", "Fez", "Rabat", "Casablanca", "Marrakesh", "Agadir", "Nouakchott",

"Dakar", "Conakry", "Freetown", "Monrovia", "Bamako", "Bobo Dioulasso", "Ouagadougou",

"Niamey", "Ilorin", "Ibadan", "Kumasi", "Abidjan", "Accra", "Lomé", "Abomey-Calavi", "Lagos",

"Ikorodu", "Benin City", "Warri", "Owerri", "Umuahia", "Onitsha", "Nnewi", "Port Harcourt",

"Yaoundé", "Douala", "Libreville", "Uyo", "Aba", "Enugu", "Lokoja", "Abuja", "Kaduna", "Jos",

"Kano", "Maiduguri", "N'Djamena", "Nyala", "Bangui", "Kisangani", "Bunia", "Kampala",

"Mwanza", "Kigali", "Bujumbura", "Bukavu", "Mbuji-Mayi", "Kananga", "Tshikapa", "Kinshasa",

"Brazzaville", "Pointe-Noire", "Cabinda", "Luanda", "Benguela", "Lubango", "Cape Town",

"Gqeberha (Port Elizabeth)", "Durban (eThekwini)", "Vereeniging (Emfuleni)", "West Rand",

"Johannesburg", "East Rand (Ekurhuleni)", "Pretoria (Tshwane)", "Matola", "Maputo", "Harare",

"Lusaka", "Lubumbashi", "Lilongwe", "Blantyre", "Antananarivo", "Nampula", "Dar es Salaam",

"Zanzibar", "Mombasa", "Nairobi", "Mogadishu", "Hargeisa", "Addis Ababa", "Asmara",

"Omdurman", "Khartoum", "Giza", "Shubra el-Kheima", "Cairo"

We will illustrate the tour by constructing a subgraph consisting only of the edges
included in the optimal tour across G.

TG d Subgraph G, Trail T ;>

TG d Graph 2: an undirected graph with 100 vertices and 100 edge(s)

DrawGraph TG>

To better visualize the tour we can combine this with a country map of Africa.

plots:-display Import "example/AfricaMap.kml", base = datadir , DrawGraph TG, stylesheet
= vertexcolor = black

>

AfricaMap.kml

Using TravelingSalesman with an arbitrary weight matrix
The previous example demonstrates the use of TravelingSalesman with edge weights
corresponding directly to geometric distances between vertices. In many instances of
the traveling salesman problem, the weights do not correspond so directly to the
geometry.

Fortunately, TravelingSalesman can also compute a tour when given an arbitrary weight
matrix. To illustrate this, let us extend the previous example of a tour of 100 African
cities to incorporate the idea that there might be some increased cost associated with
traversing an international border.

First let us get the matrix of Euclidean distances from the previous example:

DM d WeightMatrix MakeWeighted G, vertexpositions, metric = Euclidean>

Now we can construct a new weight matrix WM in which the weight is doubled whenever
the cities connected are in distinct countries.

WM d Matrix upperbound DM , i, j ifelse AfricanCities i, 3 = AfricanCities j, 3 , DM i,
j , 2$ DM i, j , datatype = double

>

We can now pass the weight matrix WM directly to TravelingSalesman to get a new tour.

 W2, T2 d TravelingSalesman G, WM, startvertex = "Cairo">

W2, T2 d 616.778513706285, "Cairo", "Shubra el-Kheima", "Alexandria", "Benghazi", "Misratah",

"Tripoli", "Tunis", "Algiers", "Oran", "Fez", "Tangier", "Rabat", "Casablanca", "Marrakesh",

"Agadir", "Nouakchott", "Dakar", "Conakry", "Freetown", "Monrovia", "Bamako",

"Bobo Dioulasso", "Ouagadougou", "Niamey", "Abidjan", "Kumasi", "Accra", "Lomé",

"Abomey-Calavi", "Lagos", "Ikorodu", "Ibadan", "Ilorin", "Benin City", "Warri", "Port Harcourt",

"Aba", "Uyo", "Umuahia", "Owerri", "Nnewi", "Onitsha", "Enugu", "Lokoja", "Abuja", "Jos",

"Kaduna", "Kano", "Maiduguri", "N'Djamena", "Bangui", "Yaoundé", "Douala", "Libreville",

"Kinshasa", "Brazzaville", "Pointe-Noire", "Cabinda", "Luanda", "Benguela", "Lubango",

"Cape Town", "Gqeberha (Port Elizabeth)", "Durban (eThekwini)", "Vereeniging (Emfuleni)",

"West Rand", "Johannesburg", "East Rand (Ekurhuleni)", "Pretoria (Tshwane)", "Matola",

"Maputo", "Nampula", "Antananarivo", "Blantyre", "Lilongwe", "Harare", "Lusaka", "Lubumbashi",

"Mbuji-Mayi", "Kananga", "Tshikapa", "Kisangani", "Bunia", "Bukavu", "Bujumbura", "Kigali",

"Kampala", "Mwanza", "Dar es Salaam", "Zanzibar", "Mombasa", "Nairobi", "Mogadishu",

"Hargeisa", "Addis Ababa", "Asmara", "Khartoum", "Nyala", "Omdurman", "Giza", "Cairo"

TG2 d Subgraph G, Trail T2>

TG2 d Graph 3: an undirected graph with 100 vertices and 100 edge(s)
This new tour is similar to the previous one in many respects, but notably does not visit
Sudan or the Democratic Republic of the Congo twice as the first one did, illustrating the
effect of our increased edge weights.

plots:-display Import "example/AfricaMap.kml", base = datadir, title = none ,
DrawGraph TG2, stylesheet = vertexcolor = black

>

Finally we can draw the original tour (in green) and the new tour (in red) to see the
effect of the altered weights.

 plots:-display DrawGraph TG, stylesheet = edgecolor = "darkgreen" DrawGraph TG2,

stylesheet = edgecolor = red

>

Multigraph support
GraphTheory now supports multigraphs. That is, graphs in which there may be multiple
edges between the same pair of vertices.

MG d Graph 4,

0 2 0 0
2 0 1 0
0 1 0 2
0 0 2 0

, multigraph>

MG d Graph 3: an undirected multigraph with 4 vertices and 5 edge(s)
The new command IsMultigraph tests whether a graph is a multigraph.

 IsMultigraph MG>

true
Many other commands have been updated to support multigraphs.

The Edges command for this graph returns a list, not a set, and repeats the edge between
vertices 3 and 4 twice.

Edges MG>

1, 2 , 1, 2 , 2, 3 , 3, 4 , 3, 4

EdgeMultiplicity MG, 1, 2>

2
Graph visualization commands such as DrawGraph will draw an integer weight on edges for
which the edge multiplicity is greater than 1.

DrawGraph MG>

1

2

3

4

2 2

Graph products
A graph product is a binary operation on graphs which takes two graphs G1 and G2 and
produces a graph H with the following properties:

The vertex set of H is the Cartesian product V G1 # V G2 where V G1 and V G2 are
the vertex sets of G1 and G2, respectively.

•

V G1

V G2

Two vertices u1, v1 and u2, v2 of H are connected by an edge, iff some condition
about u1, v1 2 G1 and u2, v2 2 G2 is fulfilled.

•

Many different graph products have been defined which differ in the condition imposed on
the edges. To the existing CartesianProduct and TensorProduct commands, the following
new graph products have been added:

Name Edge Condition

ConormalProduct u1 and v1 share an edge in G1 or u2 and v2 share an edge in G2

LexicographicProduc
t

u1 and v1 share an edge in G1, or u1 = v1 in G1 and u2 and v2

share an edge in G2

ModularProduct
u1 and v1 share an edge in G1 and u2 and v2 share an edge in

G2,

or u1 and v1 do not share an edge in G1 and u2 and v2 do not

share an edge in G2

StrongProduct
u1 = v1 in G1 and u2 and v2 share an edge in G2,

or u1 and v1 share an edge in G1 and u2 = v2 in G2

or u1 and v1 share an edge in G1 and u2 and v2 share an edge in

G2

C d CycleGraph 3>

C d Graph 4: an undirected graph with 3 vertices and 3 edge(s)

H d SpecialGraphs:-HouseGraph>

H d Graph 5: an undirected graph with 5 vertices and 6 edge(s)

LP d LexicographicProduct C, H>

LP d Graph 6: an undirected graph with 15 vertices and 93 edge(s)

plots:-display DrawGraph~ C H LP>

1

23

1

2 3

4 5 1:1

1:2

1:3

1:4

1:5

2:1

2:2

2:3

2:4

2:5

3:1

3:2

3:3

3:4

3:5

Additions to SpecialGraphs
Maple 2023 provides support for 6 additional Special Graphs, bringing the total to 119.

with SpecialGraphs :>

Bishops's Graph Bouquet Graph Dipole Graph

BG46 d
 BishopsGraph 4, 5

>

BG46 d

Graph 7: an undirected

graph with 20 vertices and

40 edge(s)

DrawGraph BG46,
 stylesheet
= vertexpadding
= 12

>

1:1

1:2

1:3

1:4

1:5

2:1

2:2

2:3

2:4

2:5

3:1

3:2

3:3

3:4

3:5

4:1

4:2

4:3

4:4

4:5

BG d BouquetGraph 5>

BG d

Graph 8: an undirected

multigraph with 1 vertex, no

edges, and 5 self-loops

DrawGraph BG,
 stylesheet
= vertexpadding
= 12

>

1
5

DG d DipoleGraph 2>

DG d

Graph 9: an undirected

multigraph with 2 vertices

and 2 edge(s)

DrawGraph DG,
 stylesheet
= vertexpadding
= 12

>

1

2

2

Hamming Graph House Graph Windmill Graph

HG33 d
 HammingGraph 3,
3

>

HG33 d

Graph 10: an undirected

graph with 27 vertices and

81 edge(s)

DrawGraph HG33, style
= spring, stylesheet

= vertexpadding
= 12

>

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24
25

26

27

HG d HouseGraph>

HG d

Graph 11: an undirected

graph with 5 vertices and 6

edge(s)

DrawGraph HG,
stylesheet
= vertexpadding
= 10

>

1

2 3

4 5

WG d
 WindmillGraph 3, 7

>

WG d

Graph 12: an undirected

graph with 15 vertices and

21 edge(s)

DrawGraph WG,
stylesheet
= vertexpadding
= 10

>

1
2
3

4
5

6 7

8
9

10
11

1213
14

15

