Maple Flow User Manual

Copyright © Maplesoft, a division of Waterloo Maple Inc. 2023

Maple Flow User Manual

Copyright

Maplesoft, Maple, and Maple Flow are all trademarks of Waterloo Maple Inc.
© Maplesoft, a division of Waterloo Maple Inc. 2023. All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means - electronic, mechanical, photocopying, recording, or otherwise. Information in this document is subject to change without notice and does not represent a commitment on the part of the vendor. The software described in this document is furnished under a license agreement and may be used or copied only in accordance with the agreement. It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Macintosh is a registered trademark of Apple Computer, Inc.
Windows is a registered trademark of Microsoft Corporation.
All other trademarks are the property of their respective owners.
This document was produced using Maple and DocBook.

Contents

1 Introduction 1
1.1 Maple Flow 1
1.2 What Does This Manual Aim to Do? 1
1.3 What Is the Relationship between Maple and Maple Flow? 2
1.4 If You're a Maple User 3
1.5 Maple Flow Help System 3
Additional Documentation 4
1.6 Interface 4
Customizing the Interface 5
2 Canvas 7
2.1 Grid 7
2.2 Grid Cursor 7
2.3 Math and Text Containers 7
2.4 Moving Containers 8
Single Container 8
Group of Containers 8
Bringing Containers from Back to Front, and Vice Versa 9
2.5 Editing an Existing Container 9
2.6 Deleting a Container 9
2.7 Inserting or Removing White Space 9
Adding Blank Rows 9
Deleting Blank Rows 9
3 Entering Math 10
3.1 Creating a Math Container 10
3.2 Deleting a Math Container 10
3.3 Evaluating Math and Displaying Output 10
3.4 Numeric and Symbolic Evaluation Modes 10
3.5 Numeric Formatting 11
3.6 Creating Definitions 13
Definitions 13
3.7 Basic Arithmetic 13
3.8 Complex Numbers 13
3.9 Units 14
Entering Units 14
Editing Existing Units 14
3.10 Notes about Calculations 15
Numerical Evaluation and Accuracy 15
Evaluation Order 16
Nonexecutable Math 16
Controlling Evaluation 16
Disabling Evaluation 18
4 Creating a Polished Document 19
4.1 Entering Text 19
Entering Math in a Text Container 19
4.2 Math and Text Styling 19
Formatting the Content of Single Containers 19
Applying Background Color to a Math Container 19
Applying and Changing Styles 20
4.3 Using Sections 21
Controlling the Display of Sections 22
Removing a Section 22
4.4 Hiding Commands 22
4.5 Including Images and Drawings 23
Drawing Tools 23
4.6 Creating Hyperlinks 30
5 Further Tools 33
5.1 Introduction 33
5.2 Functions 33
Maple Functions 33
Unsupported Maple Keywords, Commands, and Packages 33
5.3 Setting the Default Unit System 33
5.4 Variables Manager 34
5.5 Plots 34
5.6 Ease of Use Features 36
Matrices 36
Data Import Assistant 37
Command Completion 38
5.7 Code Editor 39
5.8 Logging Debugging Information 39
6 Printing and Exporting to PDF 41
6.1 Printing a Maple Flow Document 41
6.2 Print Extents 41
6.3 Headers/Footers 42
Apply a Header or Footer to All Your Documents 43
Additional Options 44
6.4 Page Setup and Print Preview 44
6.5 Export to PDF 45
6.6 Printing a Worksheet with Sections 45
7 Keyboard Shortcuts 46
Index 48

List of Figures

Figure 1.1: Overview of in-product tutorials 2
Figure 1.2: The Maple Flow interface 5
Figure 1.3: Options dialog 6
Figure 2.1: Enable/Disable Grid button on toolbar 7
Figure 2.2: Grid cursor 7
Figure 2.3: Flip to Front and Flip to Back buttons 9
Figure 3.1: Numeric formatting 11
Figure 3.2: Setting default numeric formatting 12
Figure 3.3: Inserting a Unit with the Units Palette 14
Figure 3.4: Using the Unit() function to assign a unit 14
Figure 3.5: Using keyboard shortcuts to insert a unit placeholder 14
Figure 3.6: Convert output units 15
Figure 3.7: Numerical operations 15
Figure 3.8: The effect of Digits on numerical accuracy 15
Figure 3.9: Spatial evaluation 16
Figure 3.10: Setting for controlling evaluation 17
Figure 3.11: Worksheet evaluation disabled 18
Figure 3.12: Visual indicator for disabled evaluation 18
Figure 4.1: Entering and formatting text 19
Figure 4.2: Apply background color to a math container 19
Figure 4.3: Select background color 20
Figure 4.4: A math container with background color 20
Figure 4.5: The Styles drop-down list 21
Figure 4.6: Sections in a worksheet 22
Figure 4.7: Hide commands 23
Figure 4.8: Marker indicates hidden command 23
Figure 4.9: Drawing Toolbar 23
Figure 4.10: Help Topic Hyperlink 31
Figure 4.11: Shortcut 31
Figure 4.12: Shortcut Properties 31
Figure 4.13: Using a Shortcut to execute code 32
Figure 5.1: Setting the default unit system 34
Figure 5.2: A simple plot using a Maple plot command 35
Figure 5.3: A simple 3-D plot 35
Figure 5.4: Resizing a plot 36
Figure 5.5: Matrix palette 36
Figure 5.6: Matrix from palette 37
Figure 5.7: Import data 37
Figure 5.8: Set matrix size 38
Figure 5.9: Command completion window 39
Figure 5.10: Code Editor button on main toolbar 39
Figure 6.1: Print extents 41
Figure 6.2: Inserting Headers and Footers 42
Figure 6.3: Page Setup 45

List of Tables

Table 1.1: How Maple Flow differs from Maple .. 3
Table 2.1: Container states .. 7
Table 3.1: Difference between numeric and symbolic evaluation modes ... 10
Table 3.2: Using the Command Completion feature and Expression Palette to insert a square root 13
Table 7.1: Keyboard shortcuts for canvas operations ... 46
Table 7.2: Keyboard shortcuts for menu operations .. 47

1 Introduction

1.1 Maple Flow

Maple Flow is a new calculation tool from Maplesoft. Maple Flow offers a freeform user interface combined with a comprehensive math engine. Use Maple Flow for engineering, scientific, and technical calculations and documentation.

Maple Flow gives you

- A spatially aware mathematical canvas that replicates the design metaphor of a physical whiteboard
- Automatic recalculation to ensure that results are always up to date
- A broad, rich mathematical language with many functions
- Visually impactful, fully programmatic plots
- A coding region with full access to the Maple programming language

Note for non-Windows users: The keystrokes given in this document are for Windows. If you are using a different platform, see the keyboard shortcuts for your platform in Keyboard Shortcuts (page 46).

1.2 What Does This Manual Aim to Do?

This manual describes

- The Maple Flow interface
- Differences with the Maple user interface and programming language that an existing Maple user may experience.

This manual should be read in unison with the in-product tutorials and exercises; these are available from the Tutorial link on the Maple Flow Home page. If you've closed the Home page, you can access it again from the View menu:

- Select View > Home

Tutorial

Figure 1.1: Overview of in-product tutorials
This manual does not describe the math functionality of the Maple Flow in detail, but makes references to specific functions in context of a broader discussion. The detailed documentation for the math functionality resides in the Maple online help: http://www.maplesoft.com/support/help.

1.3 What Is the Relationship between Maple and Maple Flow?

First, some definitions:

- Maple refers to the (i) Maple programming language and (ii) Maple interface.
- Maple Flow refers to the new product whose manual you are reading.

Maple Flow

- Uses the powerful Maple math engine
- Borrows a few elements from the Maple interface

Maple Flow's "language" is the commands (and their syntax), data structures and programming language. These are based on the Maple programming language; you can use any of the math functions in Maple in your Maple Flow analyses.

1.4 If You're a Maple User

If you already use Maple, you'll appreciate the unique twist that Maple Flow offers with its spatial evaluation model and automatic calculation updates. You'll also get a head start because you'll be familiar with Maple's programming language, functions, and features.

Maple Flow differs from the Maple interface and programming language in a number of ways. Several important differences are listed in Table 1.1.

Table 1.1: How Maple Flow differs from Maple

Maple Flow	* Maple
You enter math and text at any point, simply by clicking with your mouse, and typing. This is in much the same way that you can write math at any point on a whiteboard.	You can enter commands at execution prompts, which are largely aligned to the left (except when inserted into multicolumn tables), and linearly progress down the worksheet.
The evaluation model is forward in space. Any assignments are only valid at any point to the right or below where they are made.	The evaluation model is forward in time. You can use assignments above or below where they are made, at any time after the assignment is made. Most users progress linearly down a worksheet, but the apparently linear form of a worksheet is not always reflected in the displayed results.
Multiplication needs to be explicitly stated.	Multiplication can be implicit (i.e. entered with a space) or explicit.
More numeric evaluation by default (for example 5/10 evaluates to 0.5)	Results are kept symbolic except when requested to be numeric (for example, with the evalf command).
Units are automatically combined. That is, $\mathrm{N} / \mathrm{m}^{2}$ is automatically reconciled to Pa .	Units are only reconciled if explicitly requested by the user (for example, by loading a Units package).
What you see in the Maple Flow canvas is always up to date and reflects the current state of all assignments. Any changes or additions to the canvas automatically cascade down the canvas. Automatic recalculation means the currently visible portion of the canvas updates as you work, and as you scroll through the document all the calculations are updated.	Individual commands, groups of commands, or entire worksheets are only updated if requested by the user. This means results may not reflect the current value of definitions.
Matrix, vector, and array indices are only entered with square brackets.	Matrix, vector, and array indices can be entered with square brackets or typeset subscripts (in 2-D input).
Math is entered into the canvas in mathematical notation, but programmatic content is entered in Maple notation.	Equations and programs can be entered in typeset mathematics notation (often called "2-D math") or Maple notation ("1-D math").

Maple worksheets cannot be loaded into the Maple Flow, or vice versa.

1.5 Maple Flow Help System

The in-product help system, accessed through the Help menu, provides information on key commands. Each help page gives details on the usage of a command, including the calling sequence, parameters, options, and examples.

Search: Search for a command name, keyword, or phrase.
Browse: Browse the table of contents to view a structured list of help topics.

To get help on a specific word:

1. In a document, place the cursor in a word for which you want to obtain help.
2. Press F2 to access context-sensitive help.

View Help Page as Worksheet: You can open any help page as a worksheet to interact with the page and modify the examples.

- With the help page displayed in the right pane of the help system, from the View menu, select Open Page as Worksheet. A new worksheet window opens.
- Alternately, click Open current page as worksheet (ws) in the help system toolbar.

Additional Documentation

Since Maple Flow uses the Maple programming language, you have the ability to use the vast math functionality that is part of the Maple programming language. When browsing the help system, some hyperlinks take you to additional detailed documentation for the math functionality that reside on the Maplesoft website, in the Maple online help:
http://www.maplesoft.com/support/help. Note that these pages are formatted as Maple pages, not Maple Flow pages, so the examples will look a little different.

1.6 Interface

The different parts of the Maple Flow interface, as seen in Figure 1.2, are:

- Canvas - the workspace
- Main toolbar - This toolbar is always at the top of the Maple Flow window.
- Context toolbar - This toolbar, located directly above the canvas, is relevant to the current selection.
- Palettes - In the left pane, these provide an easy way to enter a math expression, matrix, Greek letter, or units.
- Context panel - Some options relevant to the current selection appear here, such as numeric formatting and units formatting.
- Status Bar - Displays system information

Figure 1.2: The Maple Flow interface

Customizing the Interface

Customize your Maple Flow preferences using the Options Dialog.
To open the Options Dialog:

- From the toolbar, click the Options icon (\$).

There are five tabs.
Under the Units tab, you can specify the default unit system (SI or FPS). For more information, see Setting the Default Unit System (page 33).

Under the Display tab, you can specify the default number of decimal places to use when rounding results. For more information, see Numeric Formatting (page 11).

Figure 1.3: Options dialog
Under the Interface tab, you can specify the following:

- Open worksheets in new tab or new window.
- Open hyperlinks in new tab or new window. This refers to hyperlinks to other Maple Flow worksheets.
- Default zoom.

Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session an future sessions.

Under the Evaluation tab, you can customize settings related to evaluation. For more information, see Controlling Evaluation (page 16).

Under the General tab, you can enable saving of debugging information to a log file. For more information, see Logging Debugging Information (page 39).

2 Canvas

2.1 Grid

When you drag math and text containers, the positions of containers are snapped to a grid. By default, the grid is not displayed.

To display the grid, click the Enable/Disable Grid button on the main toolbar.

Figure 2.1: Enable/Disable Grid button on toolbar

2.2 Grid Cursor

The grid cursor is illustrated in Figure 2.2 and by default appears in the top left corner of every new canvas.

Figure 2.2: Grid cursor
The grid cursor can be moved by pointing and clicking with the mouse, or with the arrow keys.
Math and text containers are created at the location of the grid cursor.

2.3 Math and Text Containers

On the canvas, you can create math boxes or text boxes. Each box can be moved; the position of a math container determines the order in which it is evaluated (as illustrated in Figure 3.9).

A container can be in one of three states, as described in Table 2.1.
Table 2.1: Container states

	Math	Text
Stationary with no focus. A math container in this mode is still "live", and Maple Flow will update its result if an upstream parameter changes.	$\mathrm{x}^{2}=9$	Squaring a number
Editing - Only one container can be in editing mode at any one time. - A math container has a solid dark green border if numeric, or a dashed light green border if symbolic (see Numeric and Symbolic Evaluation Modes (page 10)). - A text container has a blue border. - You will see a flashing cursor, whose position can be changed with the arrow keys or mouse.	Numeric: $x^{2}=9$ Symbolic: $x^{2}=9$	Squaring a number
Move - Math and text containers that are selected have a light blue border. Such a container is in move mode.	$x^{2}=9$	Bsauarino a number-

	Math	Text
- One or several containers can be in move		
mode.		
- Move the containers with the mouse.		
- When instead you select using the		
keyboard and Ctrl key, the container has		$x^{2}=9$
a royal blue border.		
- Move the container with Ctrl + arrow		Squaring a number

2.4 Moving Containers

Single Container

With the mouse

To move a container with the mouse:

1. Move the mouse pointer over a container.
2. Move the container to another position by click and dragging.
3. Release the mouse button when the container is in the desired position.

With the keyboard arrows

To move a container with the keyboard:

1. Move the grid cursor into a container so that the container is in editing mode.
2. Do one of the following:

- Press Ctrl and use the arrow keys to move the container one grid space at a time.
- Press Ctrl + Shift and use the arrow keys to move the container a single pixel at a time.

Note that when you press Ctrl, the container border changes to royal blue to indicate $\mathbf{C t r l}$ has been pressed.

Group of Containers

To move multiple containers:

1. Click in a blank part of the canvas.
2. Drag a selection box around a group of containers.
3. Release the mouse button.

Alternatively, you can press and hold Ctrl while you select the containers.
4. Move the mouse pointer over one of the selected containers.
5. Drag the containers to another location.

To align containers:

1. Click in a blank part of the canvas.
2. Drag a selection box around a group of containers.
3. Release the mouse button.
4. Right-click and from the context-sensitive menu, select Align Left.

Bringing Containers from Back to Front, and Vice Versa

You can potentially have two containers at the same grid position. You can bring the lower container forward, or send the top container back, by using Flip to Front and Flip to Back buttons.

Figure 2.3: Flip to Front and Flip to Back buttons

2.5 Editing an Existing Container

To enter editing mode on an existing container, do one of the following:

- With the mouse, click the container.
- With the arrow keys, move the grid cursor onto the container.

2.6 Deleting a Container

To remove a container, do one of the following:

- With the mouse, select the container (or containers) and from the toolbar, select Cut (w)
- Move the grid cursor into a container so that the container is in editing mode. Then press Ctrl + Delete to delete the in-focus container.

2.7 Inserting or Removing White Space

You can insert or remove space in the canvas (i.e. grid rows) by using the Enter, Backspace, and Delete keys.

Adding Blank Rows

To add blank rows, place the grid cursor on a blank part of the canvas and press Enter. This shifts all content on and below the same row as the grid cursor down.

Deleting Blank Rows

To delete blank rows, click on a blank row of the canvas and press one of the following:

- Backspace to remove that blank row and shift the grid cursor and all content below the grid cursor up.
- Delete to remove that blank row, and shift all content below that row up.

3 Entering Math

3.1 Creating a Math Container

A math container is a box in which you enter math that is to be evaluated.
To create a math container:

1. Click on a blank part of the canvas.
2. Begin typing your math. As soon as you enter the first character, a math container is created automatically.

3.2 Deleting a Math Container

To delete a math container, do one of the following:

- Drag-select the math container and press Delete.
- In editing mode, press Ctrl + Delete to delete the in-focus container.

3.3 Evaluating Math and Displaying Output

Anytime you leave a container by pressing Enter, or navigating away using Tab or the arrow keys, evaluation occurs.
All math is evaluated in the canvas, using a left-to-right, top-to-bottom order (see Evaluation Order (page 16)). When you need to display results, evaluate and display output.

To evaluate math and display results:

- Enter the expression, put an = at the end of the expression, then press Enter. The evaluation occurs and the result displays. The focus remains in the math container.

If desired, press Enter or the arrow keys to leave the math container.
Typically all visible calculations that are dependent on a math container are updated when the focus leaves a math container.

You can change the behavior of $=$ in a math container, if desired. See Controlling Evaluation (page 16).

3.4 Numeric and Symbolic Evaluation Modes

Maple Flow offers two math evaluation modes-numeric and symbolic.
Table 3.1: Difference between numeric and symbolic evaluation modes

The numeric evaluation mode performs as much numeric evaluation as possible. For example:

- Rational fractions (such as $1 / 2$) are converted to floating-point numbers
- Pi and $\exp (1)$ evaluate to floating-point numbers

Symbolic evaluation mode prevents numeric evaluation (except when requested by the user). For example:

- Rational fractions are only converted to floating-point numbers if request by the user (e.g. with the evalf command)
- Pi evaluates to a symbolic name

In both modes, unassigned names are evaluated symbolically (i.e. in numeric mode, unassigned names do not give an error when evaluated).

The current mode of an existing math container is given by clicking inside it, and observing the state of the border or Numeric/Symbolic buttons in the Context toolbar, as illustrated in Table 3.1.

By default, new math containers are numeric. Clicking the Symbolic button in the Context toolbar switches the in-focus math container to symbolic mode. Alternatively, use the shortcut key Alt $+\mathbf{S}$.

Holding down the Symbolic button for a second makes symbolic evaluation mode "sticky". This is indicated with a padlock by the Symbolic button (5 ymbolic ${ }^{\mathbf{a}}$). This means that all future math containers will be symbolic (until symbolic mode is toggled off, by toggling to Numeric, or with another long click on the Symbolic button).

3.5 Numeric Formatting

By default, Maple Flow displays numeric results with three decimal places. To customize the numeric formatting:

1. Place the editing cursor on a numeric result.
2. Use the Number Format options in the Context Panel.

Figure 3.1: Numeric formatting

Note that the number format options in the Context Panel only apply to a single math container.
To select a number format and apply it broadly, you can use the Options Dialog to set your desired number format and apply it either to the current session or globally.

1. From the toolbar, click the Options icon (\$).
2. Under the Display tab, select the desired number format.
3. Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session and future sessions.

Figure 3.2: Setting default numeric formatting
Maple Flow supports the following standard number formats:

- Fixed
- Currency
- Scientific
- Engineering
- Percent

You can also create a Custom format.

To apply a custom format to a single math container:

1. Place the cursor in the numeric result to be formatted.
2. In the Context Panel, under Number Format, select Custom. In the custom string field you can enter a string that is specific to your formatting needs.

Examples include the following:

- \#.\#\#\# formats to 3.12
- 00.000 formats to 03.120
- \#,\#.\# formats to $2,100,320.5$
- $\$ 0.00$ formats to $\$ 123.50$
- ??0.00; [Red](??0.00) formats to blue for a positive number, and red for a negative number
- $[<10]$ Low; [$>=100$]High;Medium formats to "Low" for numbers less than 10,"High" for numbers less than or equal to 100 , and "Medium" otherwise

To apply a custom format to all numeric results in the current session or globally:

1. From the toolbar, click the Options icon (\$).
2. Under the Display tab, for Number Format select Custom and enter your specification in the custom string field.
3. Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session and future sessions.

To remove a number format, return to the Number Format dialog and select None.

3.6 Creating Definitions

Definitions

You can assign a numerical value or an expression to a name by using := (a colon, followed by an equal sign).
For example, entering $\mathrm{a}:=4$ in a math container assigns the value 4 to the name a .
You can then use this definition later.

3.7 Basic Arithmetic

Equations are entered in typeset math notation, using standard keys such as /, *, + and -.
Note that multiplication must always be explicitly stated. For example, you must enter 3 *x, not $3 x$.
You can also use the Expression palette or Command Completion feature to enter typeset math, as illustrated in Table 3.2.

Table 3.2: Using the Command Completion feature and Expression Palette to insert a square root

For more information on command completion, see Command Completion (page 38).
When you select a template, you can then replace the placeholders in the template, using Tab to move between placeholders.

Tip: You can enter a piecewise function using the Expression palette or command completion. To add an additional line to the piecewise function, place your cursor in the piecewise function and right-click. From the context menu, select either Insert Row Above or Insert Row Below. (Similarly, you can remove a row using Delete Row in the same context menu.)

3.8 Complex Numbers

Imaginary numbers are entered with a number followed by the suffix i, with no multiplication between the two. For example, $2+2 \mathrm{i}$.

The unit complex number is created with 1 i . You cannot just enter i for the unit complex number.
To create a symbolic multiplier on an imaginary number, you need to enter $x * 1 \mathrm{i}$.

3.9 Units

Entering Units

You can enter units in several different ways.

Units Palette

You can enter units using the Units palette located in the Palettes pane on the left side of the Canvas. Click the desired unit (using the Dimensionality drop-down list to switch to different groups of units), or insert the unit placeholder (as illustrated in Figure 3.3) and overwrite the placeholder.

You may want to place a space between the number and the unit.

Figure 3.3: Inserting a Unit with the Units Palette

Unit function

You can use the Unit() function to assign a unit.
$x:=3.4 \cdot \operatorname{Unit}\left(\mathrm{~m}^{2}\right)$
Figure 3.4: Using the Unit() function to assign a unit

Keyboard shortcut

Press $\mathbf{C t r l}+\mathbf{S h i f t}+\mathbf{U}$ to enter a unit placeholder. Then, replace the placeholder with the desired units.
$x:=3.4$ unit

Figure 3.5: Using keyboard shortcuts to insert a unit placeholder

Editing Existing Units

Move the cursor onto the unit. When the unit has focus, it is highlighted by a light blue box. You can now change the unit.

Deleting all the characters in a unit placeholder will leave an empty placeholder one character in size. Deleting this empty placeholder will remove the unit placeholder entirely.

When the results of your calculations contains units, you can use the units formatting options in the Context Panel to rescale the units to units you'd prefer to see.

Figure 3.6: Convert output units

Further tools for working with units are described in Further Tools (page 33).

3.10 Notes about Calculations

Numerical Evaluation and Accuracy

Any purely numerical operations are evaluated to a floating-point approximation.
$\frac{1}{2}=0.500$
$\sqrt{2}=1.414$
$\sin (\sqrt{3} \cdot x)=\sin (1.732 \cdot x)$
Figure 3.7: Numerical operations
The Digits environment variable controls the number of digits that Maple uses when making calculations with software floating-point numbers.
The default value of Digits is 10 . The value of Digits is changed with the assignment operator (e.g. Digits:=15).
Figure 3.8 illustrates the effect of changing digits from its default value of 10 to 15 on the evaluation of $2^{0.5}$. (Note that numeric formatting on the result of $2^{0.5}$ has been set to Fixed with 20 decimal places.)

$$
\begin{aligned}
& \text { Digits }:=10 \\
& 2^{0.5}=1.41421356200000000000 \\
& \text { Digits }:=15 \\
& 2^{0.5}=1.41421356237310000000
\end{aligned}
$$

Figure 3.8: The effect of Digits on numerical accuracy

Evaluation Order

Maple Flow evaluates calculations from left-to-right, top-to-bottom (much like reading a page from a book). This means that downstream calculations only "see" assignments on the left or above. This is illustrated in Figure 3.9.

Figure 3.9: Spatial evaluation
You can change the evaluation order by moving math containers around.

Nonexecutable Math

You may want to enter nonexecuting math for documentation purposes. You can do this by entering math into a text container. For details, see Entering Math in a Text Container (page 19).

Controlling Evaluation

By default, Maple Flow recalculates all visible dependent containers when a math container is created, edited, or moved.
You can also force evaluation when your cursor is in a math container by using Ctrl + Enter.
When the calculations are in progress, the status bar at the bottom of the Maple Flow window displays a status message:
Evaluating... m / n where n is the total number of math containers being evaluated.
To stop the current calculation:

- From the toolbar, click the Interrupt icon, (1).

If you want the entire worksheet to be updated when you make an edit, you can change the settings to instead recalculate all dependent containers in the entire document.

1. From the toolbar, click the Options icon (\$).
2. Under the Evaluation tab, select one of the following:

- Evaluate only visible containers (the default)
- Evaluate all dependent containers

3. Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session and future sessions.

Figure 3.10: Setting for controlling evaluation
Under the Options $>$ Evaluation dialog, you can also change the meaning of $=$ in a math container. Under Evaluation keys, select one of the following:

- = to evaluate math and display results, and Ctrl + = for equality. When typing in a math container in this mode, at any location you can use the $=$ key to have the math container evaluate and show results. Ctrl $+=$ is used to type an equal sign without causing immediate evaluation. See the following section Expressing Equality With Alternate Evaluation Setting for examples of this setting in action.
$\cdot=+$ Enter at the end of math to evaluate and display results, and $=$ for equality (the default). The equal sign can by typed without causing an evaluation. To get a math container to display results, enter the expression, then with the cursor at the right end of the expression, press =, followed by Enter (or move the focus outside of the container).

After you make your selection, click Apply to Session or Apply Globally.

Expressing Equality with Alternate Evaluation Setting

If you select $=$ to evaluate math and display results, and $\mathbf{C t r l}+=$ for equality, by default the equal sign is used to evaluate and display results. When you are entering an expression into a math container that involves an equation, use $\mathbf{C t r l}+=$ to enter the equal sign. This allows entry of the $=$ symbol without immediate evaluation of the math container.

Example 1.
Solve this equation for $x: x^{2}-2 \cdot x-7=0$.
A one-line solution is:

$$
\operatorname{solve}\left(x^{2}-2 \cdot x-7=0, x\right) \neq 3.828,-1.828
$$

Notice there are two equal signs in this math container. The first one is part of the equation. The second one means evaluate and display results, and at the end you see the two solutions: 3.828 and -1.828 .

An alternative approach is to first define the equation, then solve for the result.

$$
\begin{aligned}
& \text { eqn }:=x^{2}-2 \cdot x-7=0 \\
& \text { solve }(\text { eqn, } x)=3.828,-1.828
\end{aligned}
$$

In both cases, use the following steps:

- To enter the equal sign between the left-hand side and right-hand side of the equation, use $\mathbf{C t r l}+=$.
- To enter the equal sign that means evaluate and show results, use $=$.

Example 2.
When the calling sequence for a command includes an option of the form name=value.
For example, on the CurveFitting:-LeastSquares help page, there is an example using the option weight:

$$
\text { CurveFitting: - LeastSquares }([0,1,2,3],[1,2,3,10], \mathrm{v} \text {, weight }=[1,1,1,10])=-0.644+3.466 \cdot \mathrm{v}
$$

In this example, use $\mathbf{C t r l}+=$ to put the equal sign in weight $=[1,1,1,10]$.
When View $>$ Visual Indicators is selected, the $=$ for equality is displayed in bold. For more uses of the visual indicators setting, see the next section and Hiding Commands (page 22).

Disabling Evaluation

If you want to author content without any math evaluating in the Maple Flow worksheet, but eventually the math will be executed, you can temporarily disable evaluation.

To disable evaluation:

- Click Turn evaluation off $(\mp$) on the toolbar. An indicator appears at the top of the canvas indicating Evaluation Disabled.

Figure 3.11: Worksheet evaluation disabled
To enable evaluation:

- Click the icon again.

To disable evaluation of a single math container:

- Right-click on the container and from the context menu, select Disable Evaluation.

There is an option to display a visual indicator for math containers that have evaluation disabled. To enable this setting, select View > Visual Indicators. When Visual Indicators is selected, a math container with evaluation disabled is drawn with a red circle at the top left corner.

$$
\begin{aligned}
& \mathrm{b}:=15 \\
& \mathrm{a}:=\frac{\mathrm{b}}{5}=3 \\
& \text { sol }:=\text { fsolve }(\log (a \cdot x)+\mathrm{a}=\mathrm{x}, \mathrm{x})=0.017
\end{aligned}
$$

Figure 3.12: Visual indicator for disabled evaluation
To show the command again, right-click and clear the Disable Evaluation check box from the context menu.

4 Creating a Polished Document

4.1 Entering Text

To enter text:

1. Click in a blank part of the canvas.
2. Press Space to create an empty text container. This will have a blue border.
3. Type your text.
4. Use the context toolbar to format your text.

My first text

Figure 4.1: Entering and formatting text
Spellcheck is available through the Tools menu.

Entering Math in a Text Container

You may want to enter nonexecuting math for documentation. You can do this by entering math into a text container.
To enter math in a text container:

1. Anywhere inside a text container, press $\mathbf{C t r l}+\mathbf{R}$ to switch into math mode.
2. Enter your math.
3. If required, press $\mathbf{C t r l}+\mathbf{T}$ to return to text mode.

4.2 Math and Text Styling

Formatting the Content of Single Containers

To change font, size, and font color, drag-select the content and use the context bar.

Applying Background Color to a Math Container

Math containers can also have a background color. This can be useful, for instance, to highlight a math container that contains the assignments for the variables that are used in the later calculations.

To apply a background color, right click on a math container.

$\mathrm{b}:=2 .$| Cut |
| :--- |
| Copy |
| Paste |
| Background Color |

Figure 4.2: Apply background color to a math container

The color selector dialog appears. Select a color.

Figure 4.3: Select background color
Figure 4.4 shows the result of using background color on the math containers that define two assignments.

Figure 4.4: A math container with background color
For information on creating plots, see Plots (page 34).

Applying and Changing Styles

The style drop-down list contains several formatting styles for text and math.

Figure 4.5: The Styles drop-down list
By default:

- Text is given the Text style.
- Math input is given the 2D Math style.
- Math output is given the 2D Output style.

You can apply other styles with the other entries (such as the Title style for text). You will need to drag-select the content of the container and pick the appropriate style.

Use the Format > Styles menu to change the typeface of the pre-defined styles.
Use the Format > Manage Style Sets menu to:

- Export and save the active style set.
- Load and apply an existing style set.

4.3 Using Sections

You can use sections to organize your document.
To create a section:

1. Select Insert $>$ Section.

If you select some content and then use Insert $>$ Section, the selection will be enclosed in the section.
2. Enter a title for the section. You can modify the font/style for the title.

To change the size of the section, you can drag the bottom boundary line. If you drag the section boundary past additional content, the section now encloses that content.

To collapse a section:

- Click the collapse button (-).

To expand a section:

- Click the expand button (+).

Figure 4.6 shows an example of a Maple Flow worksheet with sections. The first section is collapsed and the second section is expanded.

Parameters

Area Calculation

$$
\text { Area }:=\mathrm{d} \cdot \mathrm{w} \cdot \mathrm{~h}=98304 \mathrm{~cm}^{3}
$$

Figure 4.6: Sections in a worksheet
Evaluation order still applies as it normally does, and content in a section is evaluated even if a section is collapsed.

Controlling the Display of Sections

You can edit a section title by clicking in the text box for the title, or by clicking on the top boundary line.
Tip: If a section does not have a title, click on the top boundary line. This opens the title text box for editing.
You can control the display of sections using Format > Section Style. From this dialog, you can

- Control whether to display the top and bottom boundary lines.
- Control whether boundaries are displayed on only the left-most page.
- Specify margins.
- Specify boundary line thickness.
- Specify boundary line color.
- Specify boundary opacity.
- Control whether to display the expand button.

Note that if the section style is set up so the expand/collapse button is not displayed, you can expand or collapse a section by doing one of the following:

- Click the left most part of the top section boundary line
- Double-click anywhere along the top section boundary line.

For information on controlling the display of sections when printing or exporting to PDF, see Printing a Worksheet with Sections (page 45).

Removing a Section

To remove a section:

- Use Edit > Remove Section. The content remains in the canvas, and the section boundaries are removed.

4.4 Hiding Commands

When creating a document, you have control over the display of the content of math containers. You can hide the input expression and just show the resulting output by right-clicking on the math container and selecting Hide commands from the context menu.

In the case of an assignment, you can select either Hide commands or Hide commands and name.

```
b}:=1
a}:=\frac{b}{5}=
sol:= fsolve(lon(a\cdotx) + a =x x) = 0 017
    Cut
    Copy
    Paste
    Hide commands
    Hide commands and name
    Background Color
```


Figure 4.7: Hide commands

There is an option to display a visual indicator for math containers that have hidden commands. To enable this setting, select View $>$ Visual Indicators. When Visual Indicators is selected, a math container with hidden commands is drawn with a gray circle at the top left corner.

$$
\begin{aligned}
& \mathrm{b}:=15 \\
& \mathrm{a}:=\frac{\mathrm{b}}{5}=3 \\
& \text { sol }=0.017
\end{aligned}
$$

Figure 4.8: Marker indicates hidden command
To show the command again, right-click and select Show commands from the context menu.

4.5 Including Images and Drawings

You can insert images into your worksheet using Insert > Image.
To delete an image from your worksheet:

- Select the image and press Ctrl + Delete.

Tip: You can resize an image using the grab box around the image. To maintain the aspect ratio, hold the Shift key while resizing.

You can also use the drawing tools on an image.

Drawing Tools

To view the drawing tools, select an image in your Maple Flow worksheet. The Context toolbar displays the Drawing toolbar.

Figure 4.9: Drawing Toolbar
The tools include the following: selection tool, pencil (free style drawing), eraser, text insert, straight line, rectangle, rounded rectangle, oval, diamond, alignment tool, drawing outline tool, drawing fill tool, and line style tool.

Tip: For the text, line, rectangle, round rectangle, oval, and diamond tools,

- Click once on the toolbar icon to insert that type of object into the drawing. The tool is activated. For example, \searrow.
- Click twice on the toolbar icon to insert multiple objects of the same type without having to reselect the tool.

The icon is highlighted yellow. For example, \qquad The tool remains activated until you select another toolbar icon.

Text

To insert text in the drawing canvas:

1. Click the text icon (T).
2. Click in the drawing canvas (on the image). A text box appears.
3. Enter text and modify font as necessary using the toolbar font and font size drop-down lists. Include math in the text box in the same way you include math in a text container. See Entering Math in a Text Container (page 19).
4. Optional. Select a fill color for a text box or select the line color for the border in the same way it is done for objects.

Lines - Straight, Resizing, Adding Arrows

Drawing Straight Lines

To draw a straight line:

1. Click the straight line icon (\backslash).
2. (Optional) From the \longrightarrow menu, select the line style, thickness, and arrow points:

3. In the canvas, click and drag the mouse. A straight line is drawn.
4. To complete the line, click the mouse twice or press Enter. The drawing feature switches to the Selection tool.
5. You can draw more than one connected line; to complete your drawing, click the mouse twice, press Enter, or bring the end of the last line back to the start of the first line.
6. To remove the last point drawn, press Esc.

Drawing a Line that Snaps to Vertical, Horizontal, or a 45 Degree Angle

To draw a line that snaps to an orientation that is a multiple of $\mathbf{4 5}$ degrees:

1. Click the straight line icon.
2. In the canvas, click and drag the mouse.
3. Press and hold the Shift key to snap to a 45 degree increment.
4. To complete the line, click the mouse twice or press Enter.

Drawing a Line that is Attached to a Shape

To draw a line that is attached to a shape in the drawing canvas:
If you have inserted a shape in the canvas, you can draw a line that is automatically attached to that shape.

1. Click the straight line icon.
2. Press and hold the Ctrl key, and, in the canvas, hover your mouse cursor over the existing shape to which you want to attach the line. The shape is highlighted in green.
3. To draw the line, click and drag the mouse.
4. To complete the line, click the mouse twice or press Enter. The drawing feature switches to the Selection tool.

Resizing Lines

To resize objects drawn with straight lines:

1. Select the line to be resized using the selection tool.
2. With the mouse pointer over a grab box, click and drag the line to increase or decrease its size.
3. Release the mouse button.

To resize a shape and maintain the aspect ratio, hold the Shift key while resizing.

Changing Vertices of Lines

To change vertices of drawn lines in the canvas:

When an object is selected, grab boxes and nodes at the vertices are displayed.

1. Click a node and drag the mouse to the desired point, thereby changing the vertex position.
2. Release the mouse.

Changing the Line Style

To change the style of drawn lines:

You can change the line style, thickness, and arrow points of a line either when it is drawn or afterwards.

1. Select a line using the selection tool.
2. From the $\square \square$ menu, select a line style, thickness, or arrow direction and shape.

The selected change is automatically applied to the straight line.
For example, a straight, thick line will have a solid arrow on the right end after clicking on the menu item displayed above.

Rotating Images or Rotating Objects in a Drawing

You can rotate an image, or an object in a drawing. The process is the same.

To rotate an object:

1. Select the object. The vertices of the object are designated by grab boxes.
2. Place the cursor at one of the vertices.
3. Press Ctrl. The rotate icon is displayed.
4. While pressing Ctrl, click the mouse and drag. The object rotates. Release the mouse once the object is positioned as you want.

Color Selection Dialog

The drawing outline tool, drawing fill tool, and canvas properties tool allow you to select colors for shapes, lines, and the canvas grid lines. Choose a color by using one of the following tools in the color selection dialog:

Color Palette

To select a color, click a color from a palette of pre-defined colors.
The last five colors that you select are displayed in the box below the color swatches. If you want to view the RGB values of a particular color, hover your mouse cursor over a color swatch.

Color Wheel

To select a color:

1. Move the slider beside the color wheel to display a range of colors.
2. To select a color, click a point in the color wheel.

Color Value Sliders

To select a color, specify the RGB values of the color by moving the sliders. Alternatively, you can use the spinners to scroll to certain values or type the values directly in the fields. For each RGB value, you can specify a number from 0 to 225 .

Color Magnifying Glass

To select a color:

1. Select the eye dropper icon ().
2. Hover the color magnifying glass over an area on your screen that displays the color you want to select.
3. Using your mouse cursor, in the circle, click a point that displays the color.

To cancel your selection, right-click the circle.

Pencil Tool - Free Form drawing

To draw with the pencil tool in the canvas:

1. From the drawing icons, select the pencil tool icon ().
2. Click and drag your mouse in the canvas to draw lines. Release the mouse to complete the drawing.

Selection Tool - How and When to Use

To select items in the canvas use the selection tool (A).
You can use the selection tool to select a single object or a group of objects. To select a group of objects:
Using the selection tool, click and drag the mouse around the items to be grouped. Release the mouse button. The items are temporarily grouped.

Apply formatting as desired, for example by using the alignment tools in the Drawing toolbar.
To temporarily switch to the selection tool (when using another tool), press and hold the Tab key (Command, Mac). You can move and resize objects. When you release the Tab key, the tool will revert to its previous setting. This allows you to tweak something you just drew.

Filling Objects - Solid or Gradient Fill Colors

Filling an Object with a Solid Color

To fill an object with a solid color:

1. Select the object in the canvas.
2. From the $\quad \rightarrow$ menu, select the solid fill style at the top (next to None).
3. From the same menu, click the left color bar at the bottom, and select a color from the color palette.

4. To change the line color, select a color from the
\qquad menu.

Filling an Object with a Gradient Color
To fill an object with a gradient color:

1. Select the object in the canvas.
2. From the \quad menu, select one of the gradient fill styles, the square icons.
3. From the same menu, click the left and right color bars at the bottom to select a color from the color palette for each part of the gradient.

See below for instructions on filling an object with an image.

4.6 Creating Hyperlinks

You can add a hyperlink to a worksheet that links to another Maple Flow worksheet, a webpage, and more.
To insert a hyperlink:

1. In a text container, select Insert>Hyperlink. The Hyperlink Properties dialog opens.
2. For the Link Text field, enter the text to be shown.
3. Select the link type.
4. For the Target field, enter the destination. Note that you have to save your document if you want to use a relative path.
5. Optionally, you can add a hyperlink tooltip.

You can also create a hyperlink by selecting some text and using the Format $>$ Convert $>$ Hyperlink menu item.
To edit the hyperlink properties, right-click the hyperlink and select Hyperlink Properties from the context menu.
You can create a hyperlink to a Maple Flow help page. For example, setting Type to Help Topic and Target to solve creates a link to the solve help page.

Figure 4.10: Help Topic Hyperlink
In addition to hyperlinks, your worksheet can contain shortcut components, which are clickable image links. The default look of a shortcut is shown in Figure 4.11, but you can change the image used. The Application Gallery in Maple Flow uses shortcuts.

Figure 4.11: Shortcut
To insert a shortcut:

1. Click on the canvas.
2. Select Insert > Shortcut. A shortcut component is inserted at the cursor.
3. To edit the shortcut properties, select the shortcut component, and in the Context Panel the shortcut properties are available.

Name: \quad Shortcut
Shortcut0
Tooltip:
Caption:
Shortcut
Link Target:
Maple Flow Worksheet File
Image:
(none) \square Scale to a specific size
Width: 64
Height: 64
\square Enabled
\square Visible
\square Use Specified Text Width: 10

Figure 4.12: Shortcut Properties
4. Specify a caption, which appears below the image. Optionally, add a tooltip. Note: The Name field is used by Maple Flow to identify the component. The caption is what is visible.
5. Specify a link target. You can link to a Maple Flow worksheet or URL. You can also use the Shortcut to open a blank Maple Flow worksheet, execute one line of Maple code, or open a help topic.

Link Target:
Maple code
$a:=2^{\wedge} 0.1$

Figure 4.13: Using a Shortcut to execute code
6. If desired, change the image.

5 Further Tools

5.1 Introduction

This chapter provides further details on a range of tools available in Maple Flow, including mathematical functions, plots, using units in Maple flow, features that make authoring documents easier, and programming via the code editor.

5.2 Functions

Maple Functions

Maple Flow is built on top of the Maple programming language. You can use most Maple functions in Maple Flow.
Maple package functions are used in the long form. For example, SignalProcessing:-FFT(). Note: Use of the with() command to load packages is not supported.

The Maple programming language is described in the Maple online help: http://www.maplesoft.com/support/help.

Unsupported Maple Keywords, Commands, and Packages

As noted above, the with() command is not supported, and instead package commands should be called using the long form of their name. In addition, some Maple keywords, commands, and packages are not supported. The following are some examples, but not a complete list.

The assume command is not supported (use assuming instead). Some keywords, such as read and save, are not supported.
These Maple packages are not supported:

- Physics
- Tolerances
- DocumentTools
- Typesetting

Procedures can only be defined in the Code Editor. See Code Editor (page 39).

5.3 Setting the Default Unit System

By default, units in output are displayed using the SI system of units. You can change the default system of units.
To set the default system of units:

1. From the toolbar, click the Options icon (\$).
2. Under the Units tab, select the desired output unit system, SI or FPS.
3. Select Apply even if no operations are performed to force recalculation of the worksheet.
4. Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session and future sessions.

Figure 5.1: Setting the default unit system
This will not modify any units that have had units formatting applied directly as described Editing Existing Units (page 14).

5.4 Variables Manager

The Variables Manager in the palettes pane helps you keep track of the variables currently defined in your worksheet, including any defined custom units.

As you move your cursor through the worksheet, the Variables manager dynamically updates to show what variables are defined up to that point.

Button	Function
00	View - Inspect the value assigned to a variable.
\square	Hide - Hide a variable in the Variable Manager
∇	Filter - Filter the variables list so the selected variables are shown. This can be used to unhide a variable you previously hid.

You can also access these options by right-clicking on a variable in the Variable Manager.

5.5 Plots

You can create a plot with the Maple language plot command. A simple example is given in Figure 5.2.

Figure 5.2: A simple plot using a Maple plot command
Maple Flow also supports 3-D plots. A simple example is given in Figure 5.2.

$$
\operatorname{plot} 3 \mathrm{~d}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)=
$$

Figure 5.3: A simple 3-D plot
You can rotate a 3-D plot.
To rotate a plot:

1. Double-click the plot. The 3-D plotting toolbar is shown in the context menu. By default, the rotate tool ($<\boldsymbol{)}$) is enabled.
2. Hold the left mouse button and drag the mouse to re-orient the plot.
3. Release the mouse button when the plot is oriented as desired.

The values of the angles theta, phi, and psi are displayed in the 3-D plotting toolbar to help you orient the plot. You can also interact directly with the values of these angles.
θ 55 $\varphi \quad 75$ $\psi \quad 0$

The orientation is determined by rotating the plot psi degrees around the x-axis, then phi about the (transformed) y axis, and then theta about the (transformed) z-axis.

To reset the view, use the Reset view icon (叉). The rotation and zoom of the plot reset to the initial view.

You can resize the plot in the worksheet.

1. Select the plot, as shown in Figure 5.4.
2. Resize the plot. To maintain the aspect ratio, hold Shift while resizing.

Figure 5.4: Resizing a plot

Tip: When the plotting command is long, you may want to line break the command using Shift + Enter. This enters a soft new line, and can be useful for controlling the width of math containers. It also makes it possible for you to resize the plot narrower, since resizing is naturally limited by the width of the math container.

If you do not want to see the plot command at all, you can hide it as described in Hiding Commands (page 22).

5.6 Ease of Use Features

Matrices

There are a few ways to enter a Matrix.
The Matrix palette or Matrix command can be used to enter a matrix.
When you use the Matrix palette, shown in Figure 5.5, a template is inserted into the worksheet.

Figure 5.5: Matrix palette
You can then replace the placeholders in the matrix template, using Tab to move between placeholders.

$$
M:=\left[\begin{array}{cc}
m_{1,1} & m_{1,2} \\
m_{2,1} & m_{2,2}
\end{array}\right]
$$

Figure 5.6: Matrix from palette
To add an additional row or column to a matrix, place your cursor in the matrix and right-click. From the context menu, select one of:

- Insert Row Above
- Insert Row Below
- Insert Column to the Left
- Insert Column to the Right

Similarly, you can remove a row or column from the context menu.

Data Import Assistant

The data import assistant makes it easy to import your data into a worksheet. Supported file types include CSV, delimited, and Excel files, as well as audio files, image files, and graph formats.

To import data:

1. Click on a blank part of the canvas to create a math container.
2. From the Tools menu, select Import Data. The Data Import Assistant opens.
3. Browse to select a file to import.
4. Follow the steps in the assistant. When prompted, specify a variable name to which to assign the imported data.
5. Click done when prompted. A command is inserted into the math container that will import the data.

$$
\begin{aligned}
& \text { A: }: \text { ImportMatrix("C-\\
Program Files\MMaple Flow 2023\Idatalldatasets\lpima-epidemiology-diabetes.csv", } \\
& \text { source }=\operatorname{csv} \text { [standard], datatype }=\text { float[8], skiplines = 1) } \\
& A=\left[\begin{array}{ccccccccc}
6.000 & 148.000 & 72.000 & 35.000 & 0.000 & 33.600 & 0.627 & 50.000 & 1.000 \\
1.000 & 85.000 & 66.000 & 29.000 & 0.000 & 26.600 & 0.351 & 31.000 & 0.000 \\
8.000 & 183.000 & 64.000 & 0.000 & 0.000 & 23.300 & 0.672 & 32.000 & 1.000 \\
1.000 & 89.000 & 66.000 & 23.000 & 94.000 & 28.100 & 0.167 & 21.000 & 0.000 \\
0.000 & 137.000 & 40.000 & 35.000 & 168.000 & 43.100 & 2.288 & 33.000 & 1.000 \\
5.000 & 116.000 & 74.000 & 0.000 & 0.000 & 25.600 & 0.201 & 30.000 & 0.000 \\
3.000 & 78.000 & 50.000 & 32.000 & 88.000 & 31.000 & 0.248 & 26.000 & 1.000 \\
10.000 & 115.000 & 0.000 & 0.000 & 0.000 & 35.300 & 0.134 & 29.000 & 0.000 \\
2.000 & 197.000 & 70.000 & 45.000 & 543.000 & 30.500 & 0.158 & 53.000 & 1.000 \\
8.000 & 125.000 & 96.000 & 0.000 & 0.000 & 0.000 & 0.232 & 54.000 & 1.000 \\
\because & " 768 \times 9 \text { Matrix" }
\end{array}\right]
\end{aligned}
$$

Figure 5.7: Import data

Set Displayed Matrix Size

In Figure 5.7, for matrix A, a certain number of rows and columns are displayed. By default, 10 rows and 10 columns are displayed in output for any matrix. The same rules apply to one-dimensional and multidimensional data stored as arrays.

You can change this setting in the Options dialog.
To set the maximum number of rows and columns displayed:

1. From the toolbar, click the Options icon (\$).
2. Under the Display tab, specify the desired values under Output matrix size for:

- Row limit
- Column limit

3. Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session and future sessions.

Figure 5.8: Set matrix size

Command Completion

Maple Flow offers a dialog for command completion. When typing in a math container, Maple Flow suggests commands and templates that match what you have already entered.

The command completion dialog is initiated by pressing Esc or Ctrl + Space.
fs

fscanf	fscanf
fscr	f
fsolve	fsolve
fsolve	fsolve(eqn)
fsolve (equation set)	fsolve((ean1, eqn2, ...\})
fsolve (equation set, complex solutions)	fsolve((eqn1, eqn2, ...\},'complex')
$<$	$>$

Figure 5.9: Command completion window
The command completion lists include command names and templates. If there are any placeholders in your selection, they appear in a colored font. Replace the placeholders in the template, using Tab to move to the next placeholder.

Automatic Command Completion

In addition, when typing in a math container, Maple Flow offers automatic completions for items that are unambiguous. When such a suggestion is available, it appears as a yellow annotation. Pressing the Esc or Tab key inserts the suggested item.

```
DynamicSystems
Dy]
```


5.7 Code Editor

The Code Editor lets you write Maple procedures to use in a Maple Flow canvas. To learn how to write a Maple procedure, read the online Maple Programming Guide:

https://www.maplesoft.com/support/help/Maple/view.aspx?path=ProgrammingGuide/Contents

To view the code editor, click the Code Editor button on the main toolbar, as illustrated in Figure 5.10. Alternatively, from the Edit menu, select Code.

Figure 5.10: Code Editor button on main toolbar
Note: You can only enter proc definitions in the code editor. That is, your code should be in the form:

```
FirstProc:=proc(...) ... end proc;
NextProc:=proc(...) ... end proc;
```

To define the procedure, enclose a sequence of statements between proc(...) and end proc statements, and specify the parameter name(s) in the parentheses after the proc statement. For example, a simple definition for a procedure that takes one parameter and returns the square of the parameter is:

MyProc:=proc (x) $x^{\wedge} 2$; end proc;

5.8 Logging Debugging Information

Maple Flow uses a \log file. It always includes some information on the startup routine.
If necessary, you can enable the logging of debugging information into the log file. This information may be needed if you contact Technical Support.

To enable logging of debugging information:

1. From the toolbar, click the Options icon (\$).
2. Under the General tab, select Include debugging information in \log file.
3. Click Apply to Session to apply for the current Maple Flow session only, or click Apply Globally to apply the setting to the current session and future sessions.
Now, the \log file will include information that can be used for troubleshooting.
Note: The log file is located here:

- On macOS: ~\Users\username\.maplesoft\maplesoft.log
- On Windows: C:\Users\username\.maplesoft\maplesoft.log

6 Printing and Exporting to PDF

6.1 Printing a Maple Flow Document

The following sections describe settings you can control when printing or exporting to PDF.
Whenever you prepare a document for printing or export to PDF, the entire document re-evaluates if needed so everything reflects the current state.

6.2 Print Extents

Selecting View > Print Extents displays dashed horizontal and vertical lines. These indicate the extents of a printable page, taking into account the chosen page size, margins and headers/footers. Pages are printing column-by-column.

[^0]The on-screen positioning and size of math, text, plots and images will be reflected in the printed page or exported PDF.

Note: If you only want to print the left-most page, under File > Print Settings, select Print single page width. This is useful, for example, if you write extra notes to the side of your work. By using print extents and this setting, you can ensure those notes do not end up in the printed version of your document.

6.3 Headers/Footers

The Insert > Header Footer menu permits you specify a header and/or footer. This will be seen in the printed page or exported PDF, but not in the working environment.

Figure 6.2: Inserting Headers and Footers
Headers and footers can be customized, making it easy to create standardized templates. A header or footer can include date, timestamp, image, document name, page number, and so on. You can draw borders around the header, footer, or the body of the document.

To create a multi-line header or footer, use a newline character.

- On Windows, use $\backslash \mathbf{n}$
- On Mac, use $\backslash \mathbf{r}$

For example, to create a multi-line header in Windows that contains the date and timestamp on different lines:

1. From the Insert menu, select Header Footer...
2. In the Header Footer window, select the Custom Header tab.

Header and Footer					
Predefined Header and Footer	Custom Header	Custom Footer	Borders		
Insert Date	Insert Timestamp		Insert Page	Insert Numb	ges
Insert Picture	Insert File Name		Insert File Path	Optio	
Left:	Center:		Right:		
\&[Date] \n\&[Timestamp]					
Print Print Pr	\square Apply Globally			OK	Cancel

3. In the Left: text field, click Insert Date
4. Also, in the Left: text field, after the newly inserted date, type "\n".
5. Click Insert Timestamp . The Left: text field will look like this:
```
Left:
&[Date] \n&[Timestamp]
```


6. Click OK.

7. Finally, If you open Print Preview, your header should look like this:

Apr 4, 2023
11:37:53 a.m.

Note: For headers or footers on the same line, use the spacebar to insert a space between header or footer elements.

Apply a Header or Footer to All Your Documents

To apply the header or footer to all documents:

- Select Apply Globally.

To remove the global definition, open the header/footer dialog and select None for both header and footer, and check Apply Globally.

To edit the global definition, open the header/footer dialog, made the desired edits, and then check Apply Globally.

Additional Options

To access additional formatting options, click Options

From the Options menu, you can adjust:
Start headers on page. Use the option arrow buttons to select on which page you want the headers to begin appearing.
Start page numbers at. Use the option arrow buttons to select the page you want numbering to begin appearing.
Date Format: You can adjust the date format in your header or footer by selecting one of the available options from the list.

Date Format Choice	Displayed as
Short	2023-04-04
Medium	Apr 4, 2023
Long	April 4, 2023
Full	Tuesday, April 4, 2023

Scale Image. Scale the size of the inserted image as a percentage of the original size.

6.4 Page Setup and Print Preview

The File > Page Setup menu lets you change the page size, orientation, and margins, for printing.

Figure 6.3: Page Setup
The File $>$ Print Preview menu lets you preview the printed page or exported PDF.

6.5 Export to PDF

To export the canvas to a PDF, click File $>$ Export As.

6.6 Printing a Worksheet with Sections

Whether printing or exporting to PDF, if your Maple Flow worksheet has sections, you can select how it is printed.
Click File $>$ Print Settings. Select one of the following:

- Print/export document with all sections expanded.
- Print/export document keeping sections exactly as shown on-screen.

If you selected the first option, in addition, specify whether to print the section boundary markers.
For more information on controlling the display of sections, see Controlling the Display of Sections (page 22).

7 Keyboard Shortcuts

Maple Flow provides many keyboard shortcuts for ease of use. These are given in the following tables.
Table 7.1: Keyboard shortcuts for canvas operations

	Windows	Mac
Canvas operations		
With the grid cursor on an empty row: move the grid cursor, and all content below the grid cursor, down	Enter	Return
With the grid cursor on an empty row: move the grid cursor, and all content below the grid cursor, up	Backspace	Backspace
With the grid cursor on an empty row: move all content below the grid cursor up	Delete	Delete
With the grid cursor on a container: move the container	$\begin{aligned} & \text { Ctrl + arrow keys } \\ & \text { Ctrl + Shift + arrow keys } \end{aligned}$	$\begin{aligned} & \text { Command + arrow keys } \\ & \text { Command + Shift + arrow keys } \end{aligned}$
With the cursor in a container: delete the container	Ctrl + Delete	Command + Delete
Cursor to top of canvas (first container)	Ctrl + Home	Command + Home
Cursor to bottom of canvas (last container)	Ctrl + End	Command + End
Math		
Evaluate math and display output*	$=$	$=$
Update math container, then continue editing	Ctrl + Enter	Command + Return
Entering an equal sign to mean equality*	Ctrl+ =	Command + =
Add units to a value or expression	Ctrl + Shift + U	Command + Shift + U
Navigate through expression	$[\leftarrow][\rightarrow][\uparrow][\downarrow]$	$[\leftarrow][\rightarrow][\uparrow][\downarrow]$
Move cursor to different level in expression, e.g. out of exponent	$[\rightarrow]$	$[\rightarrow]$
Fraction $\frac{x}{y}$	x/y	x/y
Inline fraction x / y	$\mathrm{x} \vee \mathrm{y}$	$\mathrm{x} \vee \mathrm{y}$
Literal subscript X_{n}	$\mathrm{x} _\mathrm{n}$ (two underscores)	x_n
Exponent χ^{n}	$\mathrm{x}^{\wedge} \mathrm{n}$	$\mathrm{x}^{\wedge} \mathrm{n}$
Command or symbol completion	$\begin{aligned} & \text { Esc, or } \\ & \text { Ctrl + Space } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Esc, or } \\ & \text { Command + Shift + Space } \end{aligned}$
Navigate between placeholders in a math expression	Tab, or Shift + Tab (navigate backwards)	Tab, or Shift + Tab (navigate backwards)
Toggle between numeric/symbolic mode for math container	Alt + S	Ctrl + S
Soft new line	Shift + Enter	Shift + Return
Disable/enable evaluation of the worksheet	$\mathrm{Ctrl}+\mathrm{E}$	Command + E
Interrupt evaluation	F6	F6 + Command + . (period)
Text		
Create a text box	Space	Space
Switch to math entry in a text box	$\mathrm{Ctrl}+\mathrm{R}$	Command + R
Switch back to text entry	$\mathrm{Ctrl}+\mathrm{T}$	Command + T

* You can change the behavior of the $=$ key in a math container through the Options $>$ Evaluation dialog. For details, see Controlling Evaluation (page 16).

Table 7.2: Keyboard shortcuts for menu operations

	Windows	Mac
File		
New	$\mathrm{Ctrl}+\mathrm{N}$	Command + N
Open	$\mathrm{Ctrl}+\mathrm{O}$	Command + O
Close worksheet	$\mathrm{Ctrl}+\mathrm{F} 4$	Command + W
Save	$\mathrm{Ctrl}+\mathrm{S}$	Command + S
Save as ...	Ctrl + Shift + S	Command + Shift + S
Print	$\mathrm{Ctrl}+\mathrm{P}$	Command + P
Page setup	Ctrl + Shift + P	Command + Shift + P
Exit	Alt + F4	Command + Q
Edit		
Undo	$\mathrm{Ctrl}+\mathrm{Z}$	Command + Z
Redo	$\mathrm{Ctrl}+\mathrm{Y}$	Command + Y
Select all	$\mathrm{Ctrl}+\mathrm{A}$	Command + A
Remove section	$\mathrm{Ctrl}+\mathrm{Comma}$	Command + Comma
Code editor	Ctrl + Shift + E	Command + Shift + E
View		
Toggle grid	$\mathrm{Ctrl}+\mathrm{G}$	Command + G
Zoom factor-default	$\mathrm{Ctrl}+0$	Command +0
Zoom factor 75\%	$\mathrm{Ctrl}+1$	Command + 1
Zoom factor 100\%	$\mathrm{Ctrl}+2$	Command + 2
Zoom factor 125\%	$\mathrm{Ctrl}+3$	Command + 3
Zoom factor 150\%	$\mathrm{Ctrl}+4$	Command +4
Zoom factor 200\%	$\mathrm{Ctrl}+5$	Command +5
Zoom factor 300\%	$\mathrm{Ctrl}+6$	Command +6
Zoom factor 400\%	$\mathrm{Ctrl}+7$	Command + 7
Zoom in	$\begin{aligned} & \text { Alt + Plus, or } \\ & \text { Alt }+= \end{aligned}$	Control + Shift + =
Zoom out	Alt + -	$\begin{aligned} & \text { Control + Minus, or } \\ & \text { Control + Shift + Minus } \end{aligned}$
Insert		
Page break	Ctrl + Enter	Command + Return
Tools		
Spellcheck	F7	F7
Help		
Maple Flow Help	F1	F1
Help on Context	F2	F2

Index

Symbols

```
:=,13
=
    for equality
```

 under optional evaluation setting, 17
 to display results, 10

A

accuracy, 15
assigning
hide commands and name, 22
value to a name, 13

B

background color for math container, 19
bring to front/back, 9

C

canvas, 4
code editor, 39
command completion, 38
commands
getting help on, 3
complex numbers, 13
context panel, 4, 11
control display of math
hide commands, 22
numeric formatting of result, 11
symbolic or numeric result, 10

D

debugging
\log file, 39
defining procedures, 39
definition
creating, 13
Digits
for numerical evaluation, 15

E

editing, 7
editing units, 14
entering
math container, 7, 10
text container, 7, 19
entering math
basics, 13
command completion, 13
complex numbers, 13
definition, 13
in a text paragraph, 19
nonexecuting, $16,18,19$
using $=$
under optional evaluation setting, 17
using palettes, 13
entering units, 14
evalf, 10
evaluation
disable temporarily, 18
interrupt, 16
only visible containers, 16
order of, 16
progress bar, 16
using $=, 10$
evaluation modes
numeric and symbolic, 10

F

flip
to front/back, 9
format
section style, 21, 22
using style sets, 20
functions
Maple, 33

G

graphing, 34
grid, 7

H

help
on additional Maple commands, 3
help system, 3
hide commands, 22
Home page, 1
hyperlinks
inserting, 30

I

i, 13
images
drawing on, 23
inserting, 23
import data
using assistant, 37
insert
header or footer, 42
section, 21

K

keyboard shortcuts, 46

L

linking
to another worksheet, 30
location
grid cursor, 7

M

Maple Flow
versus Maple, 2
Maple Flow window, 4
math container
for display only, 16
set background color, 19
matrix
entering, 36
importing data for, 37
set visible matrix size, 38
moving
math container, 7
changes evaluation order, 16
text container, 7

N

numeric evaluation, 10
numeric formatting options, 11

0

Options
default zoom, 5
Display
set number format, 11
evaluate entire worksheet, 16
evaluation keys, 16
only visible containers, 16

P

packages
using Maple, 33
palettes, $4,13,36$
units, 14
variables, 34
PDF
export to, 45
Pi, 10
plotting, 34
print
settings for sections, 45
single page width only, 41
printing, 41
programming, 39

R

rounding specify decimal places, 11

S

scientific formatting, 11
section
expand or collapse, 21
sections, 21
display of, 22
shortcuts
inserting, 30
status bar, 16
symbolic evaluation, 10

T

text
formatting, 19
formatting using built-in styles, 20
text container, 19
entering math in, 19
toolbars, 4
troubleshooting
logging debugging information, 39
turning evaluation off, 18
tutorials, 1

U

units, 14
default units system, 33
rescaling, 14

V

variables
manager, 34
view
print extents, 41
visual indicators, 18,22

Z

Zoom
set default, 5

[^0]: Figure 6.1: Print extents

