Packing Disks into a Circle

Introduction

This application finds the best packing of unequal non-overlapping disks in a larger circle, such that the radius of the container is minimized. This is a difficult global optimization problem that demands strong solvers; this application uses Maple's $\underline{\text { Global Optimization Toolbox. You must have the Global Optimization }}$ Toolbox installed to use this application

One solution for the packing of 50 disks with the radii 1 to 50 (as found by this application) is visualized below. Other solutions are documented at http://www.packomania.com.

Packing optimization is industrially important, with applications in pallet loading, the arrangement of fiber optic cables in a tube, or the placing of blocks on a circuit board.

∇ Setup

$>$ restart:
with(GlobalOptimization) :
Number of circles
$>\mathrm{n}:=50$:
Radius of circle n is equal to n
$>$ for i to n do
$r_{i}:=i$
end do:

Decision Variables and Optimization Bounds

The decision variables are the coordinates (x_{i}, y_{j}) of the centers of the circles, and the radius rc of the circumscribing circle.
$>\operatorname{vars}:=\left[\operatorname{seq}\left(x_{i}, i=1 . . n\right), \operatorname{seq}\left(y_{i}, i=1 . . n\right), r c\right]:$
$>$ bounds := seq $\left(\operatorname{vars}_{i}=-500 . .500, i=1 . .2 n\right), r c=0 . .500$:

Constraints

The maximum distance between the furthest point on a circle's circumference and the origin must be smaller than the radius of the circumscribing circle.
$>\operatorname{cons1}:=\operatorname{seq}\left(r_{i}+\sqrt{x_{i}^{2}+y_{i}^{2}} \leq r c, i=1 . . n\right)$:
For circles i and j not to overlap, distance between the centers of any two circles minus their radii must be greater than zero
$>\operatorname{cons} 2:=\operatorname{seq}\left(\operatorname{seq}\left(\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}-r_{i}-r_{j} \geq 0, j=i+1 . . n\right), i=1 . . n-1\right):$
Hence the entire set of constraints
> cons := \{cons1, cons2\}:

Optimization and Results

$>$ soln := GlobalSolve (rc, cons, bounds, timelimit = 120) :
Hence the optimized radius of the circumscribing circle is
$>\operatorname{soln}[1]$
232.866858569466700
$>$ colorSpread:=ColorTools:-Gradient([221, 231, 240]..[240, 231, 221], number=n) :
$>\operatorname{circs}:=\operatorname{seq}($ plottools:-disk([rhs(select(has, soln$[2], x[i])[]), \operatorname{rhs}(\operatorname{select}($ has, soln$[2], y[i])[])]$, $r[i]$, color $=$ colorSpread $[i]$, thickness $=0), i=1 . . n)$:
$>$ boundingCirc $:=$ plottools:-disk $([0,0]$, rhs (select (has, soln [2], rc) [] $)$, color $=$ RGB $\left(\frac{236}{255}, \frac{240}{255}\right.$, $\left.\frac{241}{255}\right)$, thickness $\left.=0\right):$
$>$ plots:-display (circs, boundingCirc, scaling $=$ constrained, size $=[800,800]$, axes $=$ none $)$

