

www.maplesoft.com

Vehicle Ride and Handling Analysis

Introduction

This tool lets you experiment with the steer- and camber-by-roll coefficients of a 3-DOF vehicle model, and simulate the effect on the yaw gain curve and the understeer coefficient.

- Enter the vehicle mass, inertial, geometric and compliance properties, then the naturalfrequency requirements for the suspension
- Click "Compute Parameters" to determine the stiffness and damping coefficients
- Adjust Steer-by-Roll and Camber-by-Roll factors
- Set up simulation properties and click "Run Simulation"

Mass and Inertia

Geometry

Unsprung weight per wheel, rear	2*25 kg	Distance of CG from rear axle (b)	1.3 m
Vehicle inertia about z axis	2000	Vehicle CG height	0.6 m
Sprung mass inertial about x axis	kg⋅m ²	Sprung mass CG height	0.7 m
	$kg m^2$	Roll center height (front/rear)	0.2 m

Compliances

Requirements

First natural frequency of front	1
suspension	6.283
First natural frequency of rear suspension	1.2 7.540
Anti-roll-bar on front	

4 axle, Roll Gain

 1
$degg^{-1}$

Understeer/Oversteer

Calculated Parameters

Tire cornering stiffness 25000 (front and rear) $N \, rad^{-1}$ Tire vertical stiffness 150000 $\mathrm{N\,m}^{-1}$ Tire camber stiffness 5000 (front and rear) Nrad^{-1} Front shock absorber rate 800 (per wheel) $Nm^{-1}s^{-1}$ 1000 per wheel) $Nm^{-1}s^{-1}$ 1.3 m Installation factor for 1 m springs and shock absorbers for front and rear wheels

Rear shock absorber rate (

Distance between

installation point of left and right spoolgabsorber (front and rear):

K us -0...

Oversteer

Simulation Setup

Compute Parameters

